H3+ tagged posts

Webb captures Neptune’s auroras for first time

NASA's Webb captures Neptune's auroras for first time
Credit: Webb Space Telescope

Neptune lies in the frigid, dark, vast frontier of the outer edges of our solar system, about 3 billion miles away from the sun.

For the first time, NASA’s James Webb Space Telescope has captured bright auroral activity on Neptune. Auroras occur when energetic particles, often originating from the sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow.

In the past, astronomers have seen tantalizing hints of auroral activity on Neptune, for example, in the flyby of NASA’s Voyager 2 in 1989. However, imaging and confirming the auroras on Neptune has long evaded astronomers despite successful detections on Jupiter, Saturn, and Uranus...

Read More

Scientists discover new sources for ‘the molecule that made the universe’

MSU scientists discover new sources for 'the molecule that made the universe'
A star-forming region in the Tarantula Nebula as captured by the James Webb Space Telescope. MSU researchers have recently uncovered alternative sources of the molecule H₃⁺, which plays a crucial role in the birth of stars and other cosmic chemistry. Credit: NASA, ESA, CSA, STScI, Webb ERO Production Team

From helping catalyze interstellar reactions and fueling the birth of stars to its presence in neighborhood gas giants like Saturn and Jupiter, trihydrogen, or H3+, is best known as the “the molecule that made the universe.”

While we have a clear picture of how the majority of H3+ is formed—a hydrogen molecule, or H2, colliding with its ionized counterpart, H2+—scientists are keen to understand alternative sources of H3+ and to better measure its abundance throughout the cosmos...

Read More

Recreating Interstellar Ions with Lasers

1. Mechanisms and time-resolved dynamics for trihydrogen cation (H3 ) formation from organic molecules in strong laser fields. Scientific Reports, 2017; 7 (1) DOI: 10.1038/s41598-017-04666-w 2. MSU's Marcos Dantus has recreated interstellar ions with lasers. Credit: Courtesy of MSU

1. Mechanisms and time-resolved dynamics for trihydrogen cation (H3 ) formation from organic molecules in strong laser fields. Scientific Reports, 2017; 7 (1) DOI: 10.1038/s41598-017-04666-w
2. MSU’s Marcos Dantus has recreated interstellar ions with lasers.
Credit: Courtesy of MSU

Trihydrogen, H3+, is called the molecule that made the universe, where it plays a greater role in astrochemistry than any other molecule. While H3+ is astronomically abundant, no scientist understood the mechanisms that form it from organic molecules. Until now. Using lasers, Michigan State University scientists have unlocked the secret and published their results in the current issue of Scientific Reports...

Read More

‘Cold’ Great Spot discovered on Jupiter

The Great Cold Spot was first discovered on Jupiter using observations taken of Jupiter's auroral region by the CRIRES instrument on ESO's Very Large Telescope. The images on the left show the bright arcs of Jupiter's infrared aurora on two separate nights, the top left image on 17 October and three images taken 31 December 2012, as the planet slowly rotates. However, the Great Cold Spot cannot be seen clearly until these images are saturated so that the entire aurora becomes white, as shown on the right. Here, the planet glows as a result of the temperature of the upper atmosphere, and the distinct regions of cooling that reveal the Great Cold Spot can be seen. Based on data from VLT/ESO. Credit: Image courtesy of University of Leicester

The Great Cold Spot was first discovered on Jupiter using observations taken of Jupiter’s auroral region by the CRIRES instrument on ESO’s Very Large Telescope. The images on the left show the bright arcs of Jupiter’s infrared aurora on two separate nights, the top left image on 17 October and three images taken 31 December 2012, as the planet slowly rotates. However, the Great Cold Spot cannot be seen clearly until these images are saturated so that the entire aurora becomes white, as shown on the right. Here, the planet glows as a result of the temperature of the upper atmosphere, and the distinct regions of cooling that reveal the Great Cold Spot can be seen. Based on data from VLT/ESO. Credit: Image courtesy of University of Leicester

A second Great Spot has been discovered on Jupiter ...

Read More