indium gallium arsenide tagged posts

Quantum Computer made of Standard Semiconductor Materials

By evaporating indium gallium arsenide onto a gallium arsenide substrate TUM physicists created nanometer-scale hills, so-called quantum dots. An electron trapped in one of these quantum dots can be used to store information. Hitherto unknown memory loss mechanisms could be switched off by applying a magnetic field. Credit: Fabian Flassig / TUM

By evaporating indium gallium arsenide onto a gallium arsenide substrate TUM physicists created nanometer-scale hills, so-called quantum dots. An electron trapped in one of these quantum dots can be used to store information. Hitherto unknown memory loss mechanisms could be switched off by applying a magnetic field. Credit: Fabian Flassig / TUM

Magnetic field helps qubit electrons store information longer. Physicists have tracked down semiconductor nanostructure mechanisms that can result in the loss of stored information – and halted the amnesia using an external magnetic field. The new nanostructures comprise common semiconductor materials compatible with standard manufacturing processes.

In principle, there are various possibilities of implementing qubits: photons are an option equally ...

Read More