inter-grain boundaries tagged posts

Researchers find 1st compelling evidence of new property known as ‘Ferroelasticity’ in Perovskites

1, Schematic shows a perovskite sample (black) examined by the photothermal induced resonance technique. When the sample absorbs pulses of light (depicted as disks in purple cones), the sample expands rapidly, causing the cantilever of an atomic force microscope (AFM) to vibrate like a struck tuning fork. The cantilever’s motion, which is detected by reflecting the AFM laser light (red) off the AFM detector, provides a sensitive measure of the amount of light absorbed. Credit: NIST 2. Image recorded by an atomic force microscope reveals the topography of a polycrystalline sample of the perovskite, including the boundaries between crystals. Credit: NIST 3. Illustration shows that in response to an applied stress, such as bending, the boundaries of the ferroelastic domains (red and blue regions depict domains oriented in different directions) become bigger or smaller. Credit: NIST

1, Schematic shows a perovskite sample (black) examined by the photothermal induced resonance technique. When the sample absorbs pulses of light (depicted as disks in purple cones), the sample expands rapidly, causing the cantilever of an atomic force microscope (AFM) to vibrate like a struck tuning fork. The cantilever’s motion, which is detected by reflecting the AFM laser light (red) off the AFM detector, provides a sensitive measure of the amount of light absorbed.  2. Image recorded by an atomic force microscope reveals the topography of a polycrystalline sample of the perovskite, including the boundaries between crystals. 3...

Read More