iron sulfide tagged posts

New discovery about Meteorites informs Atmospheric Entry Threat Assessment

Researchers at the University of Illinois Urbana-Champaign watched fragments of two meteors as they ramped up the heat from room temperature to the temperature it reaches as it enters Earth’s atmosphere and made a significant discovery. The vaporized iron sulfide leaves behind voids, making the material more porous. This information will help when predicting the weight of a meteor, its likelihood to break apart, and the subsequent damage assessment if it should land.

“We extracted samples from the interiors that had not already been exposed to the high heat of the entry environment,” said Francesco Panerai, professor in the Department of Aerospace Engineering at UIUC. “We wanted to understand how the microstructure of a meteorite changes as it travels through the atmosphere.”

Pa...

Read More

Imaging the Inner Workings of a Sodium-metal Sulfide Battery for 1st time

Jun Wang (sitting), Christopher Eng (standing), Jiajun Wang (left, laptop screen), and Liguang Wang of Brookhaven National Laboratory used transmission x-ray microscopy combined with spectroscopy to produce the colored maps shown on the large screen. These maps reveal the structural expansion (and the resulting cracks/fractures) and chemical composition changes that occur as sodium ions (Fe, green) are added to and removed from iron sulfide (FeS, red) during the battery's first discharge/charge cycle. The pristine iron sulfide (box in upper left) does not return to its original state after this cycle, as some sodium ions remain trapped in the core (box in lower right). As a result, there is an initial loss in battery capacity. Credit: Brookhaven National Laboratory

Jun Wang (sitting), Christopher Eng (standing), Jiajun Wang (left, laptop screen), and Liguang Wang of Brookhaven National Laboratory used transmission x-ray microscopy combined with spectroscopy to produce the colored maps shown on the large screen. These maps reveal the structural expansion (and the resulting cracks/fractures) and chemical composition changes that occur as sodium ions (Fe, green) are added to and removed from iron sulfide (FeS, red) during the battery’s first discharge/charge cycle. The pristine iron sulfide (box in upper left) does not return to its original state after this cycle, as some sodium ions remain trapped in the core (box in lower right). As a result, there is an initial loss in battery capacity. Credit: Brookhaven National Laboratory

“We discovered that the ...

Read More