JUNO tagged posts

Juno Peers Deep into Jupiter’s Colorful Belts and Zones

Juno peers deep into Jupiter's colourful belts and zones
Artist’s impression based on JunoCam image of Jupiter acquired on July 21, 2021. Enhanced to highlight features, clouds, colours, and the beauty of Jupiter. Credit: NASA/SwRI/MSSS/Tanya Oleksuik

Leicester study of data captured in orbit around Jupiter has revealed new insights into what’s happening deep beneath the gas giant’s distinctive and colourful bands.

Data from the microwave radiometer carried by NASA’s Juno spacecraft shows that Jupiter’s banded pattern extends deep below the clouds, and that the appearance of Jupiter’s belts and zones inverts near the base of the water clouds. Microwave light allows planetary scientists to gaze deep beneath Jupiter’s colourful clouds, to understand the weather and climate in the warmer, darker, deeper layers.

At altitudes shallower than...

Read More

Huge Ring-like Structure on Ganymede’s surface may have been caused by Violent Impact

Credit: Tsunehiko Kato, 4D2U Project, NAOJ

Researchers from Kobe University and the National Institute of Technology, Oshima College have conducted a detailed reanalysis of image data from Voyager 1, 2 and Galileo spacecraft in order to investigate the orientation and distribution of the ancient tectonic troughs found on Jupiter’s moon Ganymede. They discovered that these troughs are concentrically distributed across almost the entire surface of the satellite. This global distribution indicates that these troughs may be actually part of one giant crater covering Ganymede.

Based on the results of a computer simulation conducted using the “PC Cluster” at the National Astronomical Observatory of Japan (NAOJ), it is speculated that this giant crater could have resulted from the impact o...

Read More

‘Ribbon’ wraps up Mystery of Jupiter’s Magnetic Equator

This image shows the same map of H3+ brightness as in redmap.jpg. However, here, we have overlain three different measurements of Jupiter's magnetic equator. The first, in blue (with the broadest dashes), is the best past estimate of what was thought to be the equator using ultraviolet light; the second, in red and yellow (with medium dashes) is the location of the dark ribbon seen in this map; the third is the new measurement of the magnetic equator recently measured by the Juno spacecraft. This magnetic measurement shows how closely the dark ribbon follows Jupiter's magnetic equator. Credit: University of Leicester

This image shows the same map of H3+ brightness as in redmap.jpg. However, here, we have overlain three different measurements of Jupiter’s magnetic equator. The first, in blue (with the broadest dashes), is the best past estimate of what was thought to be the equator using ultraviolet light; the second, in red and yellow (with medium dashes) is the location of the dark ribbon seen in this map; the third is the new measurement of the magnetic equator recently measured by the Juno spacecraft. This magnetic measurement shows how closely the dark ribbon follows Jupiter’s magnetic equator.
Credit: University of Leicester

New data from Jupiter observations is a gift to astronomers...

Read More

Jupiter’s X-ray Auroras Pulse Independently

Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Jupiter’s intense northern and southern lights pulse independently of each other according to new UCL-led research using ESA’s XMM-Newton and NASA’s Chandra X-ray observatories. The study found that very high-energy X-ray emissions at Jupiter’s south pole consistently pulse every 11 minutes. Meanwhile those at the north pole are erratic: increasing and decreasing in brightness, independent of the south pole.

This behaviour is distinct from Earth’s north and south auroras which broadly mirror each other in activity...

Read More