Kirigami tagged posts

Ancient 3D Paper Art, Kirigami, could Reshape Modern Wireless Technology

Credit: Drexel University

The future of wireless technology—from charging devices to boosting communication signals—relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas.

Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami—a variation of origami—can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adju...

Read More

The Ancient Art of Kirigami is inspiring a New Class of Materials

The buckling-induced Miura kirigami sheet

The buckling-induced cubic patterned kirigami sheet can be folded flat (Image courtesy of Ahmad Rafsanjani/Harvard SEAS)

Origami-inspired materials use folds in materials to embed powerful functionality. However, all that folding can be pretty labor intensive. Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) are drawing material inspiration from another ancient Japanese paper craft—kirigami. Kirigami relies on cuts, rather than folds, to change the structure and function of materials.

In a new paper published in Physical Review Letters, SEAS researchers demonstrate how a thin, perforated sheet can be transformed into a foldable 3D structure by simply stretching the cut material...

Read More

Inspired by Art, Lightweight Solar Cells track the Sun

Optical coupling efficiency and novel kirigami trackers.

(a) Coupling efficiency (ηC) versus source angle (φ) for a planar solar panel. The panel projected area decreases with the cosφ. (b) A kirigami tracking structure that, upon stretching, simultaneously changes the angle of the elements comprising the sheet. By incorporating thin-film solar cells into this structure, it may be used as a low-profile alternative to conventional single-axis solar tracking. (c) The direction of feature tilt (that is, clockwise or counter-clockwise with respect to the original plane) is controlled by lifting or lowering one end of the sheet (step 1) before the straining process (step 2).

Solar cells capture up to 40% more energy when they can track the sun, but conventional, motorized trackers are too heavy and bulky for pitched rooftops and vehicle surfaces...

Read More