logic gates tagged posts

New Transistors integrating High-k Perovskite Oxides and 2D Semiconductors

Over the past decades, electronics engineers and material scientists worldwide have been investigating the potential of various materials for fabricating transistors, devices that amplify or switch electrical signals in electronic devices. Two-dimensional (2D) semiconductors have been known to be particularly promising materials for fabricating the new electronic devices.

Despite their advantages, the use of these materials in electronics greatly depends on their integration with high-quality dielectrics, insulating materials or materials that are poor conductors of electrical current. These materials, however, can be difficult to deposit on 2D semiconductor substrates.

Researchers at Nanyang Technological University, Peking University, Tsinghua University, and the Beijing Acade...

Read More

Scientists Borrow from Electronics to Build Circuits in Living Cells

This is an artist's impression of connected CRISPR-dCas9 NOR gates. Credit: University of Washington

This is an artist’s impression of connected CRISPR-dCas9 NOR gates. Credit: University of Washington

Synthetic biology researchers have demonstrated a new method for digital information processing in living cells, analogous to the logic gates used in electric circuits. The circuits are the largest ever published to date in eurkaryotic cells and a key step in harnessing the potential of cells as living computers that can respond to disease, efficiently produce biofuels or develop plant-based chemicals.

Through billions of years of trial and error, evolution has arrived at a mode of information processing at the cellular level. In the microchips that run our computers, information processing capabilities reduce data to unambiguous 0s and 1s. In cells, it’s not that simple...

Read More

Key Challenge to Quantum Computing Overcome by Simplifying a complex Quantum Logic Operation

An artist's rendering of the quantum Fredkin (controlled-SWAP) gate, powered by entanglement, operating on photonic qubits. Credit: Raj Patel and Geoff Pryde, Center for Quantum Dynamics, Griffith University.

An artist’s rendering of the quantum Fredkin (controlled-SWAP) gate, powered by entanglement, operating on photonic qubits. Credit: Raj Patel and Geoff Pryde, Center for Quantum Dynamics, Griffith University.

The quantum circuit Fredkin gate has been experimentally realised for the first time. “Similar to building a huge wall out lots of small bricks, large quantum circuits require very many logic gates to function. However, if larger bricks are used the same wall could be built with far fewer bricks,” said Dr Patel. “We demonstrate in our experiment how one can build larger quantum circuits in a more direct way without using small logic gates.”

At present, even small and medium scale quantum computer circuits cannot be produced because of the requirement to integrate so many of these gate...

Read More