Magnetic Materials tagged posts

Tiny Particle, Huge Potential: Scientists discover New Type of Quasiparticle Present in all Magnetic Materials

Researchers recently made a groundbreaking discovery on the nanoscale: a new type of quasiparticle found in all magnetic materials, no matter their strength or temperature. These new properties shake up what researchers previously knew about magnetism, showing it’s not as static as once believed.

“Emergent topological quasiparticle kinetics in constricted nanomagnets,” was published in Physical Review Research. The researchers include Deepak Singh and Carsten Ullrich from the University of Missouri’s College of Arts and Science, along with their teams of students and postdoctoral fellows.

“We’ve all seen the bubbles that form in sparkling water or other carbonated drink products,” said Ullrich, Curators’ Distinguished Professor of Physics and Astronomy...

Read More

Chiral Phonons Create Spin Current Without needing Magnetic Materials

 Spin Seebeck effect, chiral-phonon-activated spin Seebeck effect (CPASS) and experimental setup

Researchers from North Carolina State University and the University of North Carolina at Chapel Hill used chiral phonons to convert wasted heat into spin information – without needing magnetic materials. The finding could lead to new classes of less expensive, energy-efficient spintronic devices for use in applications ranging from computational memory to powergrids.

Spintronic devices are electronic devices that harness the spin of an electron, rather than its charge, to create current used for data storage, communication, and computing...

Read More

Evidence for Exotic Magnetic Phase of Matter

Scientists identify a long-sought magnetic state predicted nearly 60 years ago. Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have discovered a long-predicted magnetic state of matter called an “antiferromagnetic excitonic insulator.”

“Broadly speaking, this is a novel type of magnet,” said Brookhaven Lab physicist Mark Dean, senior author on a paper describing the research just published in Nature Communications. “Since magnetic materials lie at the heart of much of the technology around us, new types of magnets are both fundamentally fascinating and promising for future applications.”

The new magnetic state involves strong magnetic attraction between electrons in a layered material that make the electrons want to arrange their magnetic moments, o...

Read More

Computers Create Recipe for 2 new Magnetic Materials

1. A microscopic look at the atomic structure of a cobalt-manganese-titanium mixture (Co2MnTi) that is one of the newly predicted and manufactured magnetic materials. Each color shows the distribution of a different element. The uniformity for each material matches the predictions for a stable three-element material. 2. A microscopic look at the atomic structure of a manganese-platinum-palladium mixture (Mn2PtPd), that is one of the newly predicted and manufactured magnetic materials. Each color shows the distribution of a different element. The uniformity for each material -- with the exception the small spots indicating a different phase state -- matches the predictions for a stable three-element material.

1. A microscopic look at the atomic structure of a cobalt-manganese-titanium mixture (Co2MnTi) that is one of the newly predicted and manufactured magnetic materials. Each color shows the distribution of a different element. The uniformity for each material matches the predictions for a stable three-element material.
2. A microscopic look at the atomic structure of a manganese-platinum-palladium mixture (Mn2PtPd), that is one of the newly predicted and manufactured magnetic materials. Each color shows the distribution of a different element. The uniformity for each material — with the exception the small spots indicating a different phase state — matches the predictions for a stable three-element material.

Magnets built atom-by-atom in first effort of its kind, using high-throughput computa...

Read More