memristors tagged posts

Building Energy-Efficient Computing Platforms

Building energy-efficient computing platforms
Images of the electronic platform used in the studies. Credit: CeNSE, IISc

The massive growth of data centers that consume enormous amounts of energy has contributed significantly to power shortages worldwide. With rising demand for faster and more intelligent computers and devices, there is a pressing need to develop alternatives to traditional electronic components that will make these devices more energy-efficient.

In two recent studies, researchers at the Centre for Nano Science and Engineering (CeNSE), IISc, report the development of a highly energy-efficient computing platform that offers promise in building next-generation electronic devices.

Instead of using complementary metal-oxide semiconductors (CMOS) which are the building blocks of most electronic circuits today, th...

Read More

New Molecular Device has unprecedented Reconfigurability reminiscent of Brain-Plasticity

Decision trees within a molecular memristor | Nature
Fig. 1: Circuit element structure and I(V) characteristics

Device can be reconfigured multiple times simply by changing applied voltage. In a discovery published in the journal Nature, an international team of researchers has described a novel molecular device with exceptional computing prowess.

Reminiscent of the plasticity of connections in the human brain, the device can be reconfigured on the fly for different computational tasks by simply changing applied voltages. Furthermore, like nerve cells can store memories, the same device can also retain information for future retrieval and processing.

“The brain has the remarkable ability to change its wiring around by making and breaking connections between nerve cells...

Read More

Engineers put Tens of Thousands of Artificial Brain Synapses on a Single chip

The new chip (top left) is patterned with tens of thousands of artificial synapses, or “memristors,” made with a silver-copper alloy. When each memristor is stimulated with a specific voltage corresponding to a pixel and shade in a gray-scale image (in this case, a Captain America shield), the new chip reproduced the same crisp image, more reliably than chips fabricated with memristors of different materials.
Image courtesy of the researchers

The design could advance the development of small, portable AI devices. MIT engineers have designed a “brain-on-a-chip,” smaller than a piece of confetti, that is made from tens of thousands of artificial brain synapses known as memristors — silicon-based components that mimic the information-transmitting synapses in the human brain.

The res...

Read More

Understanding the Building Blocks for an Electronic Brain

Left: A simplified representation of a small part of the brain: neurons receive, process and transmit signals through synapses. Right: a crossbar array, which is a possible architecture of how this could be realized with devices. The memristors, like synapses in the brain, can change their conductivity so that connections can be weakened and strengthened. Credit: Spintronics of Functional Materials group, University of Groningen

Left: A simplified representation of a small part of the brain: neurons receive, process and transmit signals through synapses. Right: a crossbar array, which is a possible architecture of how this could be realized with devices. The memristors, like synapses in the brain, can change their conductivity so that connections can be weakened and strengthened.
Credit: Spintronics of Functional Materials group, University of Groningen

Computer bits are binary, with a value of 0 or 1. By contrast, neurons in the brain can have all kinds of different internal states, depending on the input that they received. This allows the brain to process information in a more energy-efficient manner than a computer...

Read More