microelectronics tagged posts

At the edge of Graphene-based Electronics

A tiny graphene device on a silicon carbide substrate chip. The device rests on a person's fingertip. Credit: Jess Hunt-Ralston, Georgia Tech 

Researchers developed a new graphene-based nanoelectronics platform compatible with conventional microelectronics manufacturing, paving the way for a successor to silicon.Claire Berger, physics professor at Georgia Tech, holds the team’s graphene device grown on a silicon carbide substrate chip. Credit: Jess Hunt-Ralston, Georgia Tech 

A pressing quest in the field of nanoelectronics is the search for a material that could replace silicon. Graphene has seemed promising for decades. But its potential faltered along the way, due to damaging processing methods and the lack of a new electronics paradigm to embrace it. With silicon nearly maxed out in its ability to accommodate faster computing, the next big nanoelectronics platform is needed now more than ever.

Walter de Heer, Regen...

Read More

Simple Technique Ushers in Long-Sought Class of Semiconductors

20220901_2_fig_1.png

Breakthroughs in modern microelectronics depend on understanding and manipulating the movement of electrons in metal. Reducing the thickness of metal sheets to the order of nanometers can enable exquisite control over how the metal’s electrons move. In so doing, one can impart properties that aren’t seen in bulk metals, such as ultrafast conduction of electricity. Now, researchers from Osaka University and collaborating partners have synthesized a novel class of nanostructured superlattices. This study enables an unusually high degree of control over the movement of electrons within metal semiconductors, which promises to enhance the functionality of everyday technologies.

Precisely tuning the architecture of metal nanosheets, and thus facilitating advanced microelectronics functio...

Read More

Quantum Physics sets a Speed Limit to Electronics

An ultra short laser pulse (blue) creates free charge carriers, another pulse (red) accelerates them in opposite directions.

Semiconductor electronics is getting faster and faster — but at some point, physics no longer permits any increase. The speed can definitely not be increased beyond one petahertz (one million gigahertz), even if the material is excited in an optimal way with laser pulses.

How fast can electronics be? When computer chips work with ever shorter signals and time intervals, at some point they come up against physical limits. The quantum-mechanical processes that enable the generation of electric current in a semiconductor material take a certain amount of time. This puts a limit to the speed of signal generation and signal transmission.

TU Wien (Vienna), TU Gra...

Read More

Stretching Diamond for Next-generation Microelectronics

Stretching of microfabricated diamonds pave ways for applications in next-generation microelectronics.  (credit: Dang Chaoqun / City University of Hong Kong)

Diamond is the hardest material in nature. But out of many expectations, it also has great potential as an excellent electronic material. A joint research team led by City University of Hong Kong (CityU) has demonstrated for the first time the large, uniform tensile elastic straining of microfabricated diamond arrays through the nanomechanical approach. Their findings have shown the potential of strained diamonds as prime candidates for advanced functional devices in microelectronics, photonics, and quantum information technologies.

The research was co-led by Dr Lu Yang, Associate Professor in the Department of Mechanical Engi...

Read More