A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used in a variety of applications, including microscopic actuators and grippers for surgical robots...
Read Moremolybdenum disulfide tagged posts
Proponents of clean energy will soon have a new source to add to their existing array of solar, wind, and hydropower: osmotic power. Or more specifically, energy generated by a natural phenomenon occurring when fresh water comes into contact with seawater through a membrane. Researchers at EPFL’s Laboratory of Nanoscale Biology have developed an osmotic power generation system that delivers never-before-seen yields. Their innovation lies in a 3 atoms thick membrane used to separate the 2 fluids.
The concept is fairly simple. A semipermeable membrane separates 2 fluids with different salt concentrations...
Read MoreMechanics know molybdenum disulfide (MoS2) as a useful lubricant in aircraft and motorcycle engines and in the CV and universal joints of trucks and automobiles. Rice University researcher Isabell Thomann knows it as a remarkably light-absorbent substance that holds promise for the development of energy-efficient optoelectronic and photocatalytic devices.
“Basically, we want to understand how much light can be confined in an atomically thin semiconductor monolayer of MoS2,” said Assitant/Prof Thomann...
Read MoreAn emerging class of atomically thin materials, monolayer semiconductors has generated a great deal of buzz in the world of materials science. Monolayers hold promise in the development of transparent LED displays, ultra-high efficiency solar cells, photo detectors and nanoscale transistors. Their downside? The films are notoriously riddled with defects, killing their performance.
But a UCLA, Berkeley, and Lawrence Berkeley National Lab team, has found a simple way to fix these defects via an organic superacid...
Read More
Recent Comments