nanomachines tagged posts

Using Nature to Build Nanomachines

1. Schematic diagram of the bacterial flagellar basal body with name and size of each part. 2. Molecular models of the flagellar rod (purple) and hook (blue green) and their comparison. (a) The model of the rod and hook complex including their direct connection in a section along their tubular axis. The structures of their corresponding domains are nearly identical. (b) Structural comparison of the rod and hook subunits by superposition. Domain D1 of the hook protein is more tilted than that of the rod protein by 7°, producing a gap between subunits in the axial neighbors to make the entire hook flexible in bending. (c) The C-terminal helix (blue) of the hook is shorter than that of the rod, making an axial gap between subunits in the hook structure but not in the rod.

1. Schematic diagram of the bacterial flagellar basal body with name and size of each part.
2. Molecular models of the flagellar rod (purple) and hook (blue green) and their comparison. (a) The model of the rod and hook complex including their direct connection in a section along their tubular axis. The structures of their corresponding domains are nearly identical. (b) Structural comparison of the rod and hook subunits by superposition. Domain D1 of the hook protein is more tilted than that of the rod protein by 7°, producing a gap between subunits in the axial neighbors to make the entire hook flexible in bending. (c) The C-terminal helix (blue) of the hook is shorter than that of the rod, making an axial gap between subunits in the hook structure but not in the rod.

Scientists have imag...

Read More

2 new Nanoscale Machines developed with moving parts, with DNA as Programmable, Self-Assembling Construction material

TUM1

Rotor mechanism assembled from 3-D DNA components. Dietz Lab/TUM

In the 1st machine, a rotor mechanism was formed from interlocking 3D DNA components. Another has a hinged molecular manipulator, also made from DNA. These are just the latest steps in a campaign to transform so-called “DNA origami” into an industrially useful, commercially viable technology.

Inspired by nature’s nanomachines – such as the enzyme ATP synthase and the motor-driven flagella of bacteria – physicists in Prof. Hendrik Dietz’s lab at TUM keep expanding their own design and construction repertoire. They have systematically developed rules and procedures for creating self-assembled DNA origami structures with ever greater flexibility and control...

Read More