NASA’s Fermi Gamma-ray Space Telescope tagged posts

Moon Glows Brighter than Sun in Images from NASA’s Fermi

These images show the steadily improving view of the Moon’s gamma-ray glow from NASA’s Fermi Gamma-ray Space Telescope. Each 5-by-5-degree image is centered on the Moon and shows gamma rays with energies above 31 million electron volts, or tens of millions of times that of visible light. At these energies, the Moon is actually brighter than the Sun. Brighter colors indicate greater numbers of gamma rays. This image sequence shows how longer exposure, ranging from two to 128 months (10.7 years), improved the view.
Credit: NASA/DOE/Fermi LAT Collaboration

If our eyes could see high-energy radiation called gamma rays, the Moon would appear brighter than the Sun! That’s how NASA’s Fermi Gamma-ray Space Telescope has seen our neighbor in space for the past decade...

Read More

Possible Dark Matter ties in Andromeda Galaxy

The gamma-ray excess (shown in yellow-white) at the heart of M31 hints at unexpected goings-on in the galaxy's central region. Scientists think the signal could be produced by a variety of processes, including a population of pulsars or even dark matter. Credit: NASA/DOE/Fermi LAT Collaboration and Bill Schoening, Vanessa Harvey/REU program/NOAO/AURA/NSF

The gamma-ray excess (shown in yellow-white) at the heart of M31 hints at unexpected goings-on in the galaxy’s central region. Scientists think the signal could be produced by a variety of processes, including a population of pulsars or even dark matter. Credit: NASA/DOE/Fermi LAT Collaboration and Bill Schoening, Vanessa Harvey/REU program/NOAO/AURA/NSF

NASA’s Fermi Gamma-ray Space Telescope has found a signal at the center of the neighboring Andromeda galaxy that could indicate the presence of dark matter. The gamma-ray signal is similar to one seen by Fermi at the center of our own Milky Way galaxy. Gamma rays are the highest-energy form of light, produced by the universe’s most energetic phenomena...

Read More

NASA’s Fermi finds record-breaking Binary in galaxy next door

LMC P3 (circled) is located in a supernova remnant called DEM L241 in the Large Magellanic Cloud, a small galaxy about 163,000 light-years away. The system is the first gamma-ray binary discovered in another galaxy and is the most luminous known in gamma rays, X-rays, radio waves and visible light. Unlabeled image Credit: NOAO/CTIO/MCELS, DSS

LMC P3 (circled) is located in a supernova remnant called DEM L241 in the Large Magellanic Cloud, a small galaxy about 163,000 light-years away. The system is the first gamma-ray binary discovered in another galaxy and is the most luminous known in gamma rays, X-rays, radio waves and visible light. Unlabeled image Credit: NOAO/CTIO/MCELS, DSS

Using data from NASA’s Fermi Gamma-ray Space Telescope and other facilities, an international team has found the first gamma-ray binary in another galaxy and the most luminous one ever seen. The dual-star system, dubbed LMC P3, contains a massive star and a crushed stellar core that interact to produce a cyclic flood of gamma rays, the highest-energy form of light...

Read More

NASA’s Fermi mission expands its search for Dark Matter

Animation of gamma rays and Fermi

Top: Gamma rays (magenta lines) coming from a bright source like NGC 1275 in the Perseus galaxy cluster should form a particular type of spectrum (right). Bottom: Gamma rays convert into hypothetical axion-like particles (green dashes) and back again when they encounter magnetic fields (gray curves). The resulting gamma-ray spectrum ((lower curve at right) would show unusual steps and gaps not seen in Fermi data, which means a range of these particles cannot make up a portion of dark matter. Credits: SLAC National Accelerator Laboratory/Chris Smith

Dark matter, the mysterious substance that constitutes most of the material universe, remains as elusive as ever...

Read More