neuromorphic computing tagged posts

Quantum Material Exhibits ‘Non-Local’ Behavior that Mimics Brain Function

Illustration of brain with color energy waves traveling through it.
Creating brain-like computers with minimal energy requirements, known as neuromorphic computing, would revolutionize nearly every aspect of modern life. (cr: iStock)

We often believe computers are more efficient than humans. After all, computers can complete a complex math equation in a moment and can also recall the name of that one actor we keep forgetting. However, human brains can process complicated layers of information quickly, accurately, and with almost no energy input: recognizing a face after only seeing it once or instantly knowing the difference between a mountain and the ocean. These simple human tasks require enormous processing and energy input from computers, and even then, with varying degrees of accuracy.

Creating brain-like computers with minimal energy requireme...

Read More

Researchers develop a Material that Mimics how the Brain Stores Information

First artificial synapse that reproduces learning during sleep. Universitat Autònoma de Barcelona researchers have developed a magnetic material capable of imitating the way the brain stores information. The material makes it possible to emulate the synapses of neurons and mimic, for the first time, the learning that occurs during deep sleep.

Neuromorphic computing is a new computing paradigm in which the behavior of the brain is emulated by mimicking the main synaptic functions of neurons. Among these functions is neuronal plasticity: the ability to store information or forget it depending on the duration and repetition of the electrical impulses that stimulate neurons, a plasticity that would be linked to learning and memory.

Among the materials that mimic neuron synapses, me...

Read More

New Information Storage and Processing Device

A team of scientists has developed a means to create a new type of memory, marking a notable breakthrough in the increasingly sophisticated field of artificial intelligence.

“Quantum materials hold great promise for improving the capacities of today’s computers,” explains Andrew Kent, a New York University physicist and one of the senior investigators. “The work draws upon their properties in establishing a new structure for computation.”

The creation, designed in partnership with researchers from the University of California, San Diego (UCSD) and the University of Paris-Saclay, is reported in Scientific Reports.

“Since conventional computing has reached its limits, new computational methods and devices are being developed,” adds Ivan Schuller, a UCSD physicist and one of the...

Read More

Silicon Nanowire Transistors with both Learning and Memory Functions

The brain-inspired dynamic neurotransistor chip developed by the researchers. Credit: Baek et al.

Neuromorphic computing entails building architectures inspired by elements of the human brain, such as neural organization and synapses. These architectures have proved to be highly promising and advantageous for a number of applications, as they can have both memory and learning functions.

Most current neuromorphic architectures artificially recreate the plasticity (i.e., ability to be easily shaped over time) of synapses, which are junctions between nerve cells that enable the propagation of impulses across brain regions...

Read More