neuroprosthetics tagged posts

Speaking the Same Language: How Artificial Neurons Mimic Biological Neurons

Speaking the same language: How artificial neurons mimic biological neurons
A biological neuron and the OAN. a, Simplified schematic of a biological neuron. Action potentials, the basic cell-to-cell communication events, are generated by rapid transmembrane ion exchanges through ion channels, and they propagate across the axon. In myelinated cells, alternate myelin/non-myelin domains (nodes of Ranvier) contribute to the fast and long-range action potential propagation. Biological neurons are immersed in an electrochemical environment, such as an aqueous electrolyte. This extracellular space is a common reservoir containing various biological carriers for signaling and processing (ions, biomolecules and so on). Noise is also present in this environment. Ionic channels on the membrane endow neurons with ionic/molecular specificity and recognition. b, Circuit diagra...
Read More

‘Missing link’ found in development of Bioelectronic Medicines

Memristor chip. Credit: Image courtesy of University of Southampton

Memristor chip. Credit: Image courtesy of University of Southampton

A nanoscale device, called a memristor, could be the ‘missing link’ in the development of implants that use electrical signals from the brain to help treat medical conditions. Monitoring neuronal cell activity is fundamental to neuroscience and the development of neuroprosthetics – biomedically engineered devices that are driven by neural activity. However, a persistent problem is the device being able to process the neural data in real-time, which imposes restrictive requirements on bandwidth, energy and computation capacity.

In a new study, published in Nature Communications, the researchers showed that memristors could provide real-time processing of neuronal signals (spiking events) leading to efficient data compressio...

Read More