NIRCam tagged posts

MIRI instrument on JWST detects H-alpha emission during the Epoch of Reionization for the first time

MIRI instrument on JWST detects H-alpha emission during the Epoch of Reionization for the first time

An international team of astronomers led by Pierluigi Rinaldi of the University of Groningen has detected for the first time H-alpha emission in individual galaxies during the so-called Epoch of Reionization, or cosmic dawn. To do so, they used the deepest images taken so far by the MIRI instrument on the James Webb Space Telescope. The result has been accepted for publication in The Astrophysical Journal, and is currently published on the arXiv preprint server.

Star-forming galaxies produce a large amount of UV photons, but during the Epoch of Reionization these photons are absorbed by the intergalactic medium. The best tracer to measure the level of star formation is the H-alpha emission line in the optical spectrum...

Read More

Astrophysicists confirm the Faintest Galaxy ever seen in the Early Universe

Guido Roberts-Borsani/UCLA); original images: NASA, ESA, CSA, Swinburne University of Technology, University of Pittsburgh, STScI

An international research team led by UCLA astrophysicists has confirmed the existence of the faintest galaxy ever seen in the early universe. The galaxy, called JD1, is one of the most distant identified to date, and it is typical of the kinds of galaxies that burned through the fog of hydrogen atoms left over from the Big Bang, letting light shine through the universe and shaping it into what exists today.

The discovery was made using NASA’s James Webb Space Telescope, and the findings are published in the journal Nature.

The first billion years of the universe’s life were a crucial period in its evolution. After the Big Bang, approximately 13...

Read More

New Webb Image Reveals Dusty Disk Like Never Seen Before

These two images are of the dusty debris disk around AU Mic, a red dwarf star located 32 light-years away in the southern constellation Microscopium. Scientists used Webb’s Near-Infrared Camera (NIRCam) to study AU Mic. NIRCam’s coronagraph, which blocked the intense light of the central star, allowed the team to study the region very close to the star. The location of the star, which is masked out, is marked by a white, graphical representation at the center of each image. The region blocked by the coronagraph is shown by a dashed circle.
Credits: NASA, ESA, CSA, and K. Lawson (Goddard Space Flight Center). Image processing: A. Pagan (STScI)

NASA’s James Webb Space Telescope has imaged the inner workings of a dusty disk surrounding a nearby red dwarf star...

Read More