novae tagged posts

Scientists Recover Nova 1st Spotted 600 years ago by Korean Astrologers

This image shows the recovered nova of March 11, 1437 and its ejected shell. It was taken with the Carnegie SWOPE 1-meter telescope in Chile using a filter that highlights the hot hydrogen gas of the shell. The now-quiescent star that produced the nova shell is indicated with red tick marks; it is far from the shell's center today. However, its measured motion across the sky places it at the red '+' in 1437. The position of the center of the shell in 1437 is at the green plus sign. The agreement of the 1437 positions of the shell center and of the old nova are the 'clock' that demonstrates that the old nova of 1437 A.D. really is the source of the shell. Credit: © K. Ilkiewicz and J. Mikolajewska

This image shows the recovered nova of March 11, 1437 and its ejected shell. It was taken with the Carnegie SWOPE 1-meter telescope in Chile using a filter that highlights the hot hydrogen gas of the shell. The now-quiescent star that produced the nova shell is indicated with red tick marks; it is far from the shell’s center today. However, its measured motion across the sky places it at the red ‘+’ in 1437. The position of the center of the shell in 1437 is at the green plus sign. The agreement of the 1437 positions of the shell center and of the old nova are the ‘clock’ that demonstrates that the old nova of 1437 A.D. really is the source of the shell. Credit: © K. Ilkiewicz and J. Mikolajewska

New study proves that novae have long-term life cycle with multiple stages...

Read More

Examining Exploding Stars through the Atomic Nucleus

Imagine being able to view microscopic aspects of a classical nova, a massive stellar explosion on the surface of a white dwarf star (about as big as Earth), in a laboratory rather than from afar via a telescope.

Imagine being able to view microscopic aspects of a classical nova, a massive stellar explosion on the surface of a white dwarf star (about as big as Earth), in a laboratory rather than from afar via a telescope.

Cosmic detonations of this scale and larger created many of the atoms in our bodies, says MSU’s Christopher Wrede, who presented at the American Association for the Advancement of Science meeting. A safe way to study these events in laboratories on Earth is to investigate the exotic nuclei or “rare isotopes” that influence them. “Astronomers observe exploding stars and astrophysicists model them on supercomputers,” said Wrede, physics assistant professor, MSU...

Read More