nterferometers tagged posts

Tiny Chip provides a Big Boost in Precision Optics

Closeup of tweezers grasping tiny chip.
A 2 mm by 2 mm integrated photonic chip developed by Jaime Cardenas, assistant professor of optics, and PhD student Meiting Song (lead author) will make interferometers—and therefore precision optics—even more powerful. Potential applications include more sensitive devices for measuring tiny flaws on mirrors, or dispersion of pollutants in the atmosphere, and ultimately, quantum applications. (University of Rochester photo / J. Adam Fenster)

By merging two or more sources of light, interferometers create interference patterns that can provide remarkably detailed information about everything they illuminate, from a tiny flaw on a mirror, to the dispersion of pollutants in the atmosphere, to gravitational patterns in far reaches of the Universe.

“If you want to measure something w...

Read More