optoelectronics tagged posts

Switching with Molecules for Pioneering Electro-Optical Devices

A research team at the Technical University of Munich has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules. Credit: Yuxiang Gong / TUM / Journal of the American Chemical Society

A research team at the Technical University of Munich has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules. Credit: Yuxiang Gong / TUM / Journal of the American Chemical Society

An international research team led by physicists at the Technical University of Munich (TUM) has developed molecules that can be switched between two structurally different states using an applied voltage. Such nanoswitches can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant redu...

Read More

Researchers use World’s Smallest Diamonds to make Wires 3 Atoms wide

Researchers use world's smallest diamonds to make wires three atoms wide

This animation shows molecular building blocks joining the tip of a growing nanowire. Each block consists of a diamondoid — the smallest possible bit of diamond — attached to sulfur and copper atoms (yellow and brown spheres). Like LEGO blocks, they only fit together in certain ways that are determined by their size and shape. The copper and sulfur atoms form a conductive wire in the middle, and the diamondoids form an insulating outer shell. Credit: SLAC National Accelerator Laboratory

LEGO-style building method has potential for making 1-dimensional materials with extraordinary properties...

Read More

New Graphene-based system could help us see Electrical Signaling in Heart and Nerve cells

Image - This diagram shows the setup for an imaging method that mapped electrical signals using a sheet of graphene and an infrared laser. The laser was fired through a prism (lower left) onto a sheet of graphene. An electrode was used to send tiny electrical signals into a liquid solution (in cylinder atop the graphene), and a camera (lower right) was used to capture images mapping out these electrical signals. (Credit: Halleh Balch and Jason Horng/Berkeley Lab and UC Berkeley)

This diagram shows the setup for an imaging method that mapped electrical signals using a sheet of graphene and an infrared laser. The laser was fired through a prism (lower left) onto a sheet of graphene. An electrode was used to send tiny electrical signals into a liquid solution (in cylinder atop the graphene), and a camera (lower right) was used to capture images mapping out these electrical signals. (Credit: Halleh Balch and Jason Horng/Berkeley Lab and UC Berkeley)

Team creates a system to visualize faint electric fields. Scientists have enlisted the exotic properties of graphene, a one-atom-thick layer of carbon, to function like the film of an incredibly sensitive camera system in visually mapping tiny electric fields in a liquid...

Read More

Researchers unleash Graphene ‘Tiger’ for more Efficient Optoelectronics

Image of one of the graphene-based devices Xu and colleagues worked with. Credit: Lei Wang

Image of one of the graphene-based devices Xu and colleagues worked with. Credit: Lei Wang

In traditional light-harvesting methods, energy from 1 photon only excites 1 electron or none depending on the absorber’s energy gap. The remaining energy is lost as heat. But a new article describe an approach to coax photons into stimulating multiple electrons. Their method exploits some surprising quantum-level interactions to give one photon multiple potential electron partners.

Wu and Xu in UW’s Dept of Materials Science & Engineering and the Det of Physics, made this surprising discovery using graphene.
The researchers took a single atom layer of graphene and sandwiched it between 2 thin layers of boron-nitride. Electrons do not flow easily within boron-nitride so it is an insulator.

When the g...

Read More