p53 tagged posts

How to prevent chronic inflammation from zombie-like cells that accumulate with age

gene-editing
Credit: Unsplash/CC0 Public Domain

In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way.

Certain factors can cause cells to abandon this characteristic and enter a zombie-like state known as senescence where they persist but no longer divide to make new cells. Our bodies can remove these senescent cells that tend to pile up as we age. The older we get, however, the less efficient our immune systems become at doing so.

“In addition to no longer growing and proliferating, the other hallmark of senescent cells is that they have this inflammatory program causing them to secrete inflammatory molecules,” said Peter Adams, Ph.D...

Read More

Introducing Perceptein, a Protein-based Artificial Neural Network in Living Cells

Here, each neuron is represented as spacecrafts, with their pilots in the cockpits depicted in the shape of protein 3D structures. These spacecrafts collectively process and transmit information to the final red neuron to make decisions on space navigation. The wires that connect the neurons, with the green substance inside, indicate the flow of biological information. Credit: Ehmad Chehre

Westlake University in China and the California Institute of Technology have designed a protein-based system inside living cells that can process multiple signals and make decisions based on them.

The researchers have also introduced a unique term, “perceptein,” as a combination of protein and perceptron...

Read More

Researchers find new way to ‘Starve’ Prostate Cancer Tumors at the Cellular Level

Kirk Staschke and Noah Sommers at the microscope
Kirk Staschke and Noah Sommers, a PhD student at the IU School of Medicine, at the microscope. | Photo courtesy of Kirk Staschke

New research by a team of Indiana University School of Medicine scientists and their collaborators has uncovered a novel vulnerability in prostate cancer animal models that starves prostate tumors of critical nutrients and stunts their growth, which could lead to the development of new treatments for the deadly disease.

Led by IU School of Medicine’s Kirk Staschke, Ph.D., assistant research professor of biochemistry and molecular biology, and Ronald C. Wek, Ph.D., Showalter Professor of Biochemistry, the study was recently published in Science Signaling.

Prostate cancer is a leading cause of cancer deaths in American men...

Read More

Fever Drives Enhanced Activity, Mitochondrial Damage in Immune Cells

(Adobe Stock/Diana Duren)

Fever temperatures rev up immune cell metabolism, proliferation and activity, but they also — in a particular subset of T cells — cause mitochondrial stress, DNA damage and cell death, Vanderbilt University Medical Center researchers have discovered.

The findings, published Sept. 20 in the journal Science Immunology, offer a mechanistic understanding for how cells respond to heat and could explain how chronic inflammation contributes to the development of cancer.

The impact of fever temperatures on cells is a relatively understudied area, said Jeff Rathmell, PhD, Cornelius Vanderbilt Professor of Immunobiology and corresponding author of the new study...

Read More