phonons tagged posts

‘Molecular Accordion’ drives Thermoelectric behavior in Promising Material

Redistribution of electronic clouds causes a lattice instability and freezes the flow of heat in highly efficient tin selenide. The crystal lattice adopts a distorted state in which the chemical bonds are stretched into an accordion-like configuration, and makes an excellent thermoelectric because heat propagation is thwarted. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

Redistribution of electronic clouds causes a lattice instability and freezes the flow of heat in highly efficient tin selenide. The crystal lattice adopts a distorted state in which the chemical bonds are stretched into an accordion-like configuration, and makes an excellent thermoelectric because heat propagation is thwarted. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

Engines, laptops and power plants generate waste heat. Thermoelectric materials, which convert temperature gradients to electricity and vice versa, can recover some of that heat and improve energy efficiency. Scientists have explored the fundamental physics of the world’s best thermoelectric material — tin selenide – using neutron scattering and computer simulations...

Read More