photonic integrated circuits tagged posts

Teaching Photonic Chips to ‘Learn’

CHIP used in research
Silicon Photonic Architecture for Training Deep Neural Networks with Direct Feedback Alignment, OPTICA

A multi-institution research team has developed an optical chip that can train machine learning hardware.

Machine learning applications skyrocketed to $165B annually, according to a recent report from McKinsey. But, before a machine can perform intelligence tasks such as recognizing the details of an image, it must be trained. Training of modern-day artificial intelligence (AI) systems like Tesla’s autopilot costs several million dollars in electric power consumption and requires supercomputer-like infrastructure. This surging AI “appetite” leaves an ever-widening gap between computer hardware and demand for AI...

Read More

Lasers + Anti-lasers: Marriage opens door to Development of Single Device with Exceptional Optical Capabilities

Schematics above show light input (green) entering opposite ends of a single device. When the phase of light input 1 is faster than that of input 2 (left panel), the gain medium dominates, resulting in coherent amplification of the light, or a lasing mode. When the phase of light input 1 is slower than input 2 (right panel), the loss medium dominates, leading to coherent absorption of the input light beams, or an anti-lasing mode. (Credit: Zi Jing Wong/UC Berkeley)

Scanning electron microscope image of the single device capable of lasing and anti-lasing. Indium gallium arsenide phosphide (InGaAsP) material functions as the gain medium, while the chromium (Cr) and germanium (Ge) structures introduce the right amount of loss to satisfy the condition of parity-time symmetry that is required for lasing and anti-lasing. (Credit: Zi Jing Wong/UC Berkeley)(From left) Berkeley researchers Xiang Zhang, Zi Jing Wong, Jeongmin Kim and Yuan Wang stand next to the optical setup they designed to demonstrate both lasing and anti-lasing in a single device. (Credit: Marilyn Chung/Berkeley Lab)

  1. Schematics above show light input (green) entering opposite ends of a single device. When the phase of light input 1 is faster than that of input 2 (left panel), the gain medium dominates, resulting in coherent amplification of the light, or a lasing mode. When the phase of light input 1 is slower than input 2 (right panel), the loss medium dominates, leading to coherent absorption of the input light beams, or an anti-lasing mode. (Credit: Zi Jing Wong/UC Berkeley)
  2. Scanning electron microscope image of the single device capable of lasing and anti-lasing...
Read More