Planetary formation tagged posts

Why does Mercury have such a Big Iron Core? Magnetism!

A new study disputes the prevailing hypothesis on why Mercury has a big core relative to its mantle (the layer between a planet’s core and crust). For decades, scientists argued that hit-and-run collisions with other bodies during the formation of our solar system blew away much of Mercury’s rocky mantle and left the big, dense, metal core inside. But new research reveals that collisions are not to blame—the sun’s magnetism is.

William McDonough, a professor of geology at the University of Maryland, and Takashi Yoshizaki from Tohoku University developed a model showing that the density, mass and iron content of a rocky planet’s core are influenced by its distance from the sun’s magnetic field...

Read More

Peculiar Planetary System Architecture around 3 Orion Stars explained

New observations of GW Orionis, a triple star system with a peculiar inner region, revealed that this object has a warped planet-forming disk with a misaligned ring. The image on the right is from the SPHERE instrument on the European Southern Observatory’s Very Large Telescope, which allowed astronomers to see, for the first time, the shows this ring casts on the rest of the disk. This helped the researchers figure out the 3D shape of the ring and the overall disk. The left panel shows an artistic impression of the disk’s inner region, including the ring, which is based on the 3D shape reconstructed by the team. Credit: ESO/L. Calçada, Exeter/Kraus et al.

The discovery that our galaxy is teeming with exoplanets has also revealed the vast diversity of planetary systems out there a...

Read More

Asteroid Ryugu likely link in Planetary Formation

Close-up of Asteroid Ryugu. Credit: JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST, Kobe University, Auburn University

The solar system formed approximately 4.5 billion years ago. Numerous fragments that bear witness to this early era orbit the sun as asteroids. Around three-quarters of these are carbon-rich C-type asteroids, such as 162173 Ryugu, which was the target of the Japanese Hayabusa2 mission in 2018 and 2019. The spacecraft is currently on its return flight to Earth...

Read More

Earth Formed much Faster than previously thought, new study shows

Illustration of protoplanetary disk (stock image). | Credit: (c) Peter Jurik / stock.adobe.com
Illustration of protoplanetary disk (stock image).
Credit: © Peter Jurik / Adobe Stock

By measuring iron isotopes, researchers have shown that our planet originally formed much faster than previously thought. This finding provides new insights on both planetary formation and the likelihood of water and life elsewhere in the universe.

The precursor of our planet, the proto-Earth, formed within a time span of approximately five million years, shows a new study from the Centre for Star and Planet Formation (StarPlan) at the Globe Institute at the University of Copenhagen.

On an astronomical scale, this is extremely fast, the researchers explain.

If you compare the solar system’s estimated 4...

Read More