Do more with one link - claim and personalize your FREE link today! Effortlessly schedule, video meet, message chat, network, share materials, e-sign, etc – all in one spot. Collaborate, Nurture connections, Improve client services, Expedite deal closures, and more. 💼 Join FREE!!
Data from NASA’s New Horizons mission are providing new insights into how planets and planetesimals – the building blocks of the planets – were formed.
The New Horizons spacecraft flew past the ancient Kuiper Belt object Arrokoth (2014 MU69) on Jan...
The surface features of the northern and southern hemispheres of Mars are very different. In this topographic map, the northern hemisphere (shown in blue) is mostly smooth lowlands and has experienced extensive volcanism. The southern hemisphere (in orange) has an older, cratered highland surface. This dichotomy could have been caused by a giant impact. Credit: University of Arizona/LPL/SwRI
New research has revealed that a giant impact on Mars more than 4 billion years ago would explain the unusual amount of “iron loving” elements in the Red Planet. Planets form as small dust grains stick together and agglomerate with other grains, leading to bigger bodies termed “planetesimals...
Left: The paths traced by the known Martian Trojans around L4 or L5 (crosses) relative to Mars (red disk) and the Sun (yellow disk). The dotted circle indicates the average Sun-Mars distance. Right: Enlargement of inset (dashed rectangle) showing the paths of the 8 L5 Trojans: 1998 VF31 (marked as “VF31” – blue), Eureka (red) and the 6 objects identified as family members (amber). The filled disks indicate the relative sizes of the asteroids. Eureka, the largest member, is about 2 km across. Credit: Apostolos Christou
Mars shares its orbit with the Trojans, a handful of small asteroids. Now an international team using the Very Large Telescope have found that most of these objects share a common composition; they are likely the remains of a mini-planet destroyed by a collision long ago...
Recent Comments