protoplanetary disks tagged posts

‘Sandwich’ Discovery offers New Explanation for Planet Formation

An artist's impression of a planetary system appearing in colours of orange, yellow and brown.
Artistic rendering of how small planets can form ‘sandwiched’ in between two larger ones.
Credit: University of Warwick/Mark A. Garlick Licence type Attribution (CC BY 4.0)

Scientists have made a new discovery on how small planets might form. Researchers at the University of Warwick investigated the “birth environment” of planets—areas of gas and dust that swirl around a central star—known as the protoplanetary disk.

They discovered a new method of planet formation in this region, not yet described in previous research. The work has been submitted to the journal Monthly Notices of the Royal Astronomical Society and is showcased at the National Astronomy Meeting, which begins today, Monday 3 July...

Read More

Researchers use AI to discover New Planet outside Solar System

The exoplanet was detected using machine learning, a branch of artificial intelligence

A University of Georgia research team has confirmed evidence of a previously unknown planet outside of our solar system, and they used machine learning tools to detect it.

A recent study by the team showed that machine learning can correctly determine if an exoplanet is present by looking in protoplanetary disks, the gas around newly formed stars.

The newly published findings represent a first step toward using machine learning to identify previously overlooked exoplanets.

“We confirmed the planet using traditional techniques, but our models directed us to run those simulations and showed us exactly where the planet might be,” said Jason Terry, doctoral student in the UGA Franklin Colleg...

Read More

Small Stars may Host Bigger Planets than previously thought

Artist’s impression of sunrise on planet NGTS-1b, a gas giant previously discovered orbiting a low-mass star. Credit: University of Warwick/Mark Garlick

Stars with less than half the mass of our sun are able to host giant Jupiter-style planets, in conflict with the most widely accepted theory of how such planets form, according to a new study led by UCL (University College London) and University of Warwick researchers.

Gas giants, like other planets, form from disks of material surrounding young stars. According to core accretion theory, they first form a core of rock, ice and other heavy solids, attracting an outer layer of gas once this core is sufficiently massive (about 15 to 20 times that of Earth).

However, low-mass stars have low-mass disks that, models predict, would not provide enough material to form a gas giant in this way, or at least not quickly enough before the disk breaks up.

In the study, accepted for publica...

Read More

It’s a Planet: New evidence of Baby Planet in the making

Credit: M.Weiss/Center for Astrophysics | Harvard & Smithsonian

Astronomers agree that planets are born in protoplanetary disks – rings of dust and gas that surround young, newborn stars. While hundreds of these disks have been spotted throughout the universe, observations of actual planetary birth and formation have proved difficult within these environments.

Now, astronomers at the Center for Astrophysics | Harvard & Smithsonian have developed a new way to detect these elusive newborn planets — and with it, “smoking gun” evidence of a small Neptune or Saturn-like planet lurking in a disk. The results are described today in The Astrophysical Journal Letters.

“Directly detecting young planets is very challenging and has so far only been successful in one or two cases,” says Feng ...

Read More