protoplanetary disks tagged posts

Retreating Snow Line reveals Organic Molecules around Young Star

The distribution of dust is shown in orange and the distribution of methanol, an organic molecule, is shown in blue.
Credit: ALMA (ESO/NAOJ/NRAO), Lee et al. V883Ori

Astronomers using ALMA have detected various complex organic molecules around the young star V883 Ori. A sudden outburst from this star is releasing molecules from the icy compounds in the planet forming disk. The chemical composition of the disk is similar to that of comets in the modern Solar System. Sensitive ALMA observations enable astronomers to reconstruct the evolution of organic molecules from the birth of the Solar System to the objects we see today.

The research team led by Jeong-Eun Lee (Kyung Hee University, Korea) used the Atacama Large Millimeter/submillimeter Array (ALMA) to detect complex organic molec...

Read More

Unknown Treasure Trove of Planets found Hiding in Dust


The Taurus Molecular Cloud, pictured here by ESA’s Herschel Space Observatory, is a star-forming region about 450 light-years away. The image frame covers roughly 14 by 16 light-years and shows the glow of cosmic dust in the interstellar material that pervades the cloud, revealing an intricate pattern of filaments dotted with a few compact, bright cores — the seeds of future stars. (Image: ESA/Herschel/PACS, SPIRE/Gould Belt survey Key Programme/Palmeirim et al. 2013)

The first unbiased survey of protoplanetary disks surrounding young stars in the Taurus star-forming region turned up a higher-than-expected number of disks with features suggesting nascent planets, according to a new study...

Read More

Light Echoes give clues to Planet Nursery around Star

This illustration shows a star surrounded by a protoplanetary disk. Material from the thick disk flows along the star's magnetic field lines and is deposited onto the star's surface. When material hits the star, it lights up brightly. The star's irregular illumination allows astronomers to measure the gap between the disk and the star by using a technique called "photo-reverberation" or "light echoes." First, astronomers look at how much time it takes for light from the star to arrive at Earth. Then, they compare that with the time it takes for light from the star to bounce off the inner edge of the disk and then arrive at Earth. That time difference is used to measure distance, as the speed of light is constant. Credit: NASA/JPL-Caltech

This illustration shows a star surrounded by a protoplanetary disk. Material from the thick disk flows along the star’s magnetic field lines and is deposited onto the star’s surface. When material hits the star, it lights up brightly. The star’s irregular illumination allows astronomers to measure the gap between the disk and the star by using a technique called “photo-reverberation” or “light echoes.” First, astronomers look at how much time it takes for light from the star to arrive at Earth. Then, they compare that with the time it takes for light from the star to bounce off the inner edge of the disk and then arrive at Earth. That time difference is used to measure distance, as the speed of light is constant. Credit: NASA/JPL-Caltech

For the 1st time, astronomers used echoes of light t...

Read More