quantum anomalous Hall insulator tagged posts

A Breakthrough on the Edge: One Step Closer to Topological Quantum Computing

Researchers at the University of Cologne have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing / publication in Nature Physics.

A team of experimental physicists led by the University of Cologne have shown that it is possible to create superconducting effects in special materials known for their unique edge-only electrical properties. This discovery provides a new way to explore advanced quantum states that could be crucial for developing stable and efficient quantum computers. Their study, titled ‘Induced superconducting correlations in a quantum anomalous Hall insulator’, has been published in Nature Physics.

Superconductivity is a phenomenon where electricity ...

Read More

Current takes a Surprising Path in Quantum Material

Direct visualization of electronic transport in a quantum anomalous Hall  insulator | Nature Materials
Magnetic imaging of a QAH effect sample.

Cornell has used magnetic imaging to obtain the first direct visualization of how electrons flow in a special type of insulator, and by doing so they discovered that the transport current moves through the interior of the material, rather than at the edges, as scientists had long assumed.

The finding provides new insights into the electron behavior in so-called quantum anomalous Hall insulators and should help settle a decades-long debate about how current flows in more general quantum Hall insulators. These insights will inform the development of topological materials for next-generation quantum devices.

The team’s paper, “Direct Visualization of Electronic Transport in a Quantum Anomalous Hall Insulator,” published Aug...

Read More