quantum computers tagged posts

Scientists make Breakthrough in Quantum Materials Research

A “bending station,” a device crafted in the laboratory of Luis Jaurequi, UCI professor of physics and astronomy, can change the electrical characteristics of materials at the atomic scale. Steve Zylius / UCI

The advance will allow researchers to transform everyday materials into conductors for use in quantum computers. Researchers at the University of California, Irvine and Los Alamos National Laboratory, publishing in the latest issue of Nature Communications, describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

“The materials we made are substances that exhibit unique electrical or quantum properties because of their specific atomic shapes or structures,” said Luis A...

Read More

Late not great – Imperfect Timekeeping places Significant Limit on Quantum Computers

Late not great – imperfect timekeeping places significant limit on quantum computers

Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.

New research from a consortium of quantum physicists, led by Trinity College Dublin’s Dr Mark Mitchison, shows that imperfect timekeeping places a fundamental limit to quantum computers and their applications...

Read More

‘Toggle Switch’ Can Help Quantum Computers Cut Through the Noise

A blue-tinged drawing shows a schematic of the two qubits and resonator above a white rectangle, which represents the SQUID device that controls the connections and relationships among the qubits and resonator elements.
This photo shows the central working region of the device. In the lower section, the three large rectangles (light blue) represent the two quantum bits, or qubits, at right and left and the resonator in the center. In the upper, magnified section, driving microwaves through the antenna (large dark-blue rectangle at bottom) induces a magnetic field in the SQUID loop (smaller white square at center, whose sides are about 20 micrometers long). The magnetic field activates the toggle switch. The microwaves’ frequency and magnitude determine the switch’s position and strength of connection among the qubits and resonator.
Credit: R. Simmonds/NIST

The novel device could lead to more versatile quantum processors with clearer outputs...

Read More

Entangled Atoms Cross Quantum Network from one Lab to another

Illustration mehrerer Gebäude mit einer roten Kugel im ersten Gebäude und einer grünen Kugel im letzten, dazwischen eine strichlierte Linie.
The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria.

Trapped ions are one of the leading systems to build quantum computers and other quantum technologies. To link multiple such quantum systems, interfaces are needed through which the quantum information can be transmitted. In recent years, researchers led by Tracy Northup and Ben Lanyon at the University of Innsbruck’s Department of Experimental Physics have developed a method for doing this by trapping atoms in optical cavities such that quantum information can be efficiently transferred to light particles. The light particles can then be sent through optical fibers to connect atoms at different locations...

Read More