quantum computers tagged posts

Building a Better Quantum Bit: New qubit breakthrough could transform quantum computing

An illustration of the qubit platform made of a single electron on solid neon. Researchers froze neon gas into a solid at very low temperatures, sprayed electrons from a light bulb onto the solid and trapped a single electron there to create a qubit. (Courtesy of Dafei Jin/Argonne National Laboratory)

A team led by researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, in close collaboration with FAMU-FSU College of Engineering Associate Professor of Mechanical Engineering Wei Guo, has announced the creation of a new qubit platform that shows great promise to be developed into future quantum computers. Their work is published in Nature.

“Quantum computers could be a revolutionary tool for performing calculations that are practically impossible for classica...

Read More

Magnetism helps Electrons Vanish in High-temp Superconductors

The Fermi surface on the left shows the arrangement of electrons in a copper-oxide high temperature superconductor before the “critical point.” After the critical point, the Fermi surface on the right shows that most electrons vanish. Research by the Brad Ramshaw’s lab connects this disappearance with magnetism.

A physicist’s discovery could lead to the engineering of high-temp superconducting properties into materials useful for quantum computing, medical imaging.

Superconductors — metals in which electricity flows without resistance — hold promise as the defining material of the near future, according to physicist Brad Ramshaw, and are already used in medical imaging machines, drug discovery research and quantum computers being built by Google and IBM.

However, the super-...

Read More

Measuring Tiny Quantum Effects with High Precision

A research team has discovered a Heisenberg-limited metrology via weak-value amplification without using entangled resources. Most quantum information technologies including quantum computers – considered a step above supercomputers – and quantum communication that cannot be hacked are based on the principle of quantum entanglement. However, entangled systems exist in a small microscopic world and are pretty fragile. Quantum metrology, which provides enhanced sensitivity over conventional measurements in precision metrology, has also mainly relied on quantum entanglement, so that it is hard to implement in real life applications. Recently, a Korean research team has proposed a method to achieve the quantum metrology precision without using entangled resources.

A POSTECH research te...

Read More

Machine Learning Models Quantum Devices

Quantum reservoir computing. B and F represent the input and output states, respectively, of a quantum system. E is an auxiliary system necessary to pass the sequence of input states B to the quantum reservoir S. S can then be read to emulate F without disrupting the system. ©2021 Tran et al.

A novel algorithm allows for efficient and accurate verification of quantum devices. Technologies that take advantage of novel quantum mechanical behaviors are likely to become commonplace in the near future. These may include devices that use quantum information as input and output data, which require careful verification due to inherent uncertainties. The verification is more challenging if the device is time dependent when the output depends on past inputs...

Read More