quantum entanglement tagged posts

Rethinking the Quantum Chip

Researchers in Cleland Lab at the University of Chicago Pritzker School of Molecular Engineering, including (from left) alumnus Haoxiong Yan, PhD candidate Xuntao Wu, and Prof. Andrew Cleland, have realized a new design for a superconducting quantum processor. (Photo by John Zich)

New research demonstrates a brand-new architecture for scaling up superconducting quantum devices. Researchers at the UChicago Pritzker School of Molecular Engineering (UChicago PME) have realized a new design for a superconducting quantum processor, aiming at a potential architecture for the large-scale, durable devices the quantum revolution demands.

Unlike the typical quantum chip design that lays the information-processing qubits onto a 2-D grid, the team from the Cleland Lab has designed a modular qua...

Read More

Through the Quantum Looking Glass

Green laser light illuminates a metasurface that is a hundred times thinner than paper, that was fabricated at the Center for Integrated Nanotechnologies. CINT is jointly operated by Sandia and Los Alamos national laboratories for the Department of Energy Office of Science. (Photo by Craig Fritz) Click on the thumbnail for a high-resolution image.

A thin device triggers one of quantum mechanics’ strangest and most useful phenomena. An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published in the journal Science.

Scientists at Sandia National Laboratories and the Max Planck Institute for the...

Read More

Quantum Entanglement realized between Distant Large Objects

Quantum entanglement realized between distant large objects
Light propagates through the atomic cloud shown in the center and then falls onto the SiN membrane shown on the left. As a result of interaction with light the precession of atomic spins and vibration of the membrane become quantum correlated. This is the essence of entanglement between the atoms and the membrane. Credit: Niels Bohr Institute

A team of researchers at the Niels Bohr Institute, University of Copenhagen, have succeeded in entangling two very different quantum objects. The result has several potential applications in ultra-precise sensing and quantum communication and is now published in Nature Physics.

Entanglement is the basis for quantum communication and quantum sensing...

Read More

Scientists demonstrate Quantum Radar Prototype

Illustration of a quantum radar prototype. © IST Austria/Philip Krantz
Illustration of a quantum radar prototype. © IST Austria/Philip Krantz

Physicists at the Institute of Science and Technology Austria (IST Austria) have invented a new radar prototype that utilizes quantum entanglement as a method of object detection. This successful integration of quantum mechanics into our everyday devices could significantly impact the biomedical and security industries. The research is published in the journal Science Advances.

Quantum entanglement is a physical phenomenon where two particles remain inter-connected, sharing physical traits regardless of how far apart they are from one another...

Read More