quantum Internet tagged posts

Physicists Demonstrate First Metro-Area Quantum Computer Network in Boston

A simple internet with significant possibilities
Map showing path of two-node quantum network through Cambridge and Boston, Massachusetts. Credit: Can Knaut via OpenStreetMap

It’s one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It’s quite another to physically show it’s possible.

That’s exactly what Harvard physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world’s longest fiber distance between two quantum memory nodes to date. Think of it as a simple, closed internet between point A and B, carrying a signal encoded not by classical bits like the existing internet, but by perfectly secure, individual particles of light.

The groundbreaking work, titled “Entanglement of nanopho...

Read More

Giant Leap toward Quantum Internet realized with Bell State Analyzer

ORNL’s Joseph Lukens runs experiments in an optics lab. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Scientists’ increasing mastery of quantum mechanics is heralding a new age of innovation. Technologies that harness the power of nature’s most minute scale show enormous potential across the scientific spectrum, from computers exponentially more powerful than today’s leading systems, sensors capable of detecting elusive dark matter, and a virtually unhackable quantum internet.

Researchers at the Department of Energy’s Oak Ridge National Laboratory, Freedom Photonics and Purdue University have made strides toward a fully quantum internet by designing and demonstrating the first ever Bell state analyzer for frequency bin coding.

Their findings were published in Optica.

Bef...

Read More

Machine Learning Models Quantum Devices

Quantum reservoir computing. B and F represent the input and output states, respectively, of a quantum system. E is an auxiliary system necessary to pass the sequence of input states B to the quantum reservoir S. S can then be read to emulate F without disrupting the system. ©2021 Tran et al.

A novel algorithm allows for efficient and accurate verification of quantum devices. Technologies that take advantage of novel quantum mechanical behaviors are likely to become commonplace in the near future. These may include devices that use quantum information as input and output data, which require careful verification due to inherent uncertainties. The verification is more challenging if the device is time dependent when the output depends on past inputs...

Read More

Light used to detect Quantum Information Stored in 100,000 Nuclear Quantum Bits

Quantum particles

Researchers have found a way to use light and a single electron to communicate with a cloud of quantum bits and sense their behaviour, making it possible to detect a single quantum bit in a dense cloud.

The researchers, from the University of Cambridge, were able to inject a ‘needle’ of highly fragile quantum information in a ‘haystack’ of 100,000 nuclei. Using lasers to control an electron, the researchers could then use that electron to control the behaviour of the haystack, making it easier to find the needle. They were able to detect the ‘needle’ with a precision of 1.9 parts per million: high enough to detect a single quantum bit in this large ensemble.

The technique makes it possible to send highly fragile quantum information optically to a nuclear system for storage, and ...

Read More