quantum mechanics tagged posts

Through the Quantum Looking Glass

Green laser light illuminates a metasurface that is a hundred times thinner than paper, that was fabricated at the Center for Integrated Nanotechnologies. CINT is jointly operated by Sandia and Los Alamos national laboratories for the Department of Energy Office of Science. (Photo by Craig Fritz) Click on the thumbnail for a high-resolution image.

A thin device triggers one of quantum mechanics’ strangest and most useful phenomena. An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published in the journal Science.

Scientists at Sandia National Laboratories and the Max Planck Institute for the...

Read More

Wormholes help Resolve Black Hole Information Paradox

Figure 1: As depicted in science fiction, a wormhole is a shortcut connecting two points in spacetime. A RIKEN physicist and two collaborators have used a new spacetime geometry with a wormhole-like structure to show that information is not necessarily irretrievably lost from black holes as they evaporate. © MARK GARLICK/SCIENCE PHOTO LIBRARY

A RIKEN physicist and two colleagues have found that a wormhole—a bridge connecting distant regions of the Universe—helps to shed light on the mystery of what happens to information about matter consumed by black holes.

Einstein’s theory of general relativity predicts that nothing that falls into a black hole can escape its clutches...

Read More

Listening to Quantum Radio

This quantum chip (1×1 cm big) allows the researchers to listen to the smallest radio signal allowed by quantum mechanics.
Credit: TU Delft

Researchers at Delft University of Technology have created a quantum circuit that enables them to listen to the weakest radio signal allowed by quantum mechanics. This new quantum circuit opens the door to possible future applications in areas such as radio astronomy and medicine (MRI). It also enables researchers to do experiments that can shed light on the interplay between quantum mechanics and gravity.

We have all been annoyed by weak radio signals at some point in our lives: our favourite song in the car turning to noise, being too far away from our wifi router to check our email...

Read More

A New Bose-Einstein Condensate

The wavelength of emitted light grows, that is, the energy decreases, along the gold nanorod array. A Bose-Einstein condensate forms when an energy minimum of the lattice is reached. Credit: Aalto University / Tommi Hakala and Antti Paraoanu

The wavelength of emitted light grows, that is, the energy decreases, along the gold nanorod array. A Bose-Einstein condensate forms when an energy minimum of the lattice is reached. Credit: Aalto University / Tommi Hakala and Antti Paraoanu

Nearly a hundred years ago, Albert Einstein and Satyendra Nath Bose predicted that quantum mechanics can force a large number of particles to behave in concert as if they were only a single particle. The phenomenon is called Bose-Einstein condensation, and it took until 1995 to create the first such condensate of a gas of alkali atoms. Although Bose-Einstein condensation has been observed in several systems, the limits of the phenomenon need to be pushed further: to faster timescales, higher temperatures, and smaller sizes...

Read More