quantum photonics tagged posts

Quantum Dots can Spit out Clone-like Photons

Scanning Transmission Electron Microscope image (STEM) of single perovskite quantum dots. New study shows that single perovskite quantum dots could be a fundamental building block for quantum-photonic technologies for computing or communications.
Credit: Image courtesy of the authors

Researchers have produced coherent single photon emitters, a key component for future quantum computers and communications systems. The study, which involves using a family of materials known as perovskites to make light-emitting particles called quantum dots, appears today in the journal Science. The paper is by MIT graduate student in chemistry Hendrik Utzat, professor of chemistry Moungi Bawendi, and nine others at MIT and at ETH in Zurich, Switzerland.

The ability to produce individual photons with...

Read More

First Step towards Photonic Quantum Network

This is an illustration of a photon gun. A quantum dot (the yellow symbol) emits one photon (red wave packet) at a time. The quantum dot is embedded in a photonic crystal structure, which is obtained by etching holes (black circles) in a semiconductor material. Due to the holes, the photons cannot be emitted in all directions, but only along the waveguide, which is formed by omitting a number of holes. Credit: Illustration: Søren Stobbe, NBI

This is an illustration of a photon gun. A quantum dot (the yellow symbol) emits one photon (red wave packet) at a time. The quantum dot is embedded in a photonic crystal structure, which is obtained by etching holes (black circles) in a semiconductor material. Due to the holes, the photons cannot be emitted in all directions, but only along the waveguide, which is formed by omitting a number of holes. Credit: Illustration: Søren Stobbe, NBI

Advanced photonic nanostructures are well on their way to revolutionising quantum technology for quantum networks based on light. Researchers from the Niels Bohr Institute have now developed the first building blocks needed to construct complex quantum photonic circuits for quantum networks...

Read More