Do more with one link - claim and personalize your FREE link today! Effortlessly schedule, video meet, message chat, network, share materials, e-sign, etc – all in one spot. Collaborate, Nurture connections, Improve client services, Expedite deal closures, and more. 💼 Join FREE!!
By using photons and electron spin qubits to control nuclear spins in a 2D material, researchers at Purdue University have opened a new frontier in quantum science and technology, enabling applications like atomic-scale nuclear magnetic resonance spectroscopy, and to read and write quantum information with nuclear spins in 2D materials.
Quantum simulation gives a sneak peek into the possibilities of time reversal. An international team of scientists led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory returned a computer briefly to the past. It suggests new paths for exploring the backward flow of time in quantum systems. They also open new possibilities for quantum computer program testing and error correction.
To achieve the time reversal, the research team developed an algorithm for IBM’s public quantum computer that simulates the scattering of a particle. In classical physics, this might appear as a billiard ball struck by a cue, traveling in a line...
Contrary to classical bits, quantum bits can assume two states at the same time: Right and left, yellow and blue, zero and one. Credit: KIT
Hurricanes, traffic jams, demographic development – to predict the effect of such events, computer simulations are required. Many processes in nature, however, are so complicated that conventional computers fail. Quantum simulators may solve this problem. One of the basic phenomena in nature is the interaction between light and matter in photosynthesis. Physicists of Karlsruhe Institute of Technology (KIT) have now made a big step towards quantum mechanics understanding of plant metabolism. This is reported in Nature Communications.
“A quantum simulator is the preliminary stage of a quantum computer...
Recent Comments