Qubits tagged posts

Quantinuum Quantum Computer using Microsoft’s ‘Logical Quantum Bits’ runs 14,000 Experiments with No Errors

Quantinuum quantum computer using Microsoft's 'logical quantum bits' runs 14,000 experiments with no errors
High-level depiction of the logical program of the Bell resource-state preparation using the Steane code. Credit: arXiv (2024). DOI: 10.48550/arxiv.2404.02280

A team of computer engineers from quantum computer maker Quantinuum, working with computer scientists from Microsoft, has found a way to greatly reduce errors when running experiments on a quantum computer. The combined group has published a paper describing their work and results on the arXiv preprint server.

Computer scientists have been working for several years to build a truly useful quantum computer that could achieve quantum supremacy. Research has come a long way, most of which has involved adding more qubits.

But such research has been held up by one main problem—quantum computers make a lot of errors...

Read More

New Study uses Machine Learning to Bridge the Reality Gap in Quantum Devices

New study uses machine learning to bridge the reality gap in quantum devices
(a) Device geometry including the gate electrodes (labeled G1–G8), donor ion plane, and an example disorder potential experienced by confined electrons. Typical flow of current from source to drain is indicated by the white arrow. (b) Schematic of the disorder inference process. Colors indicate the following: red for experimentally controllable variables, green for quantities relevant to the electrostatic model, blue for experimental device, and yellow for machine learning methods. Dashed arrows represent the process of generating training data for the deep learning approximation and are not part of the disorder inference process. Credit: Physical Review X (2024). DOI: 10.1103/PhysRevX.14.011001

A study led by the University of Oxford has used the power of machine learning to ove...

Read More

Machine Learning Contributes to Better Quantum Error Correction

ai-generated image
An AI-generated image illustrating the work

Researchers from the RIKEN Center for Quantum Computing have used machine learning to perform error correction for quantum computers—a crucial step for making these devices practical—using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

In contrast to classical computers, which operate on bits that can only take the basic values 0 and 1, quantum computers operate on “qubits”, which can assume any superposition of the computational basis states...

Read More

Study achieves the Coherent Manipulation of Electron Spins in Silicon

Study achieves the coherent manipulation of electron spins in silicon
Electrons in silicon experience a coupling between their spin (up and down arrows) and valley states (blue and red orbitals). In the presence of a DC voltage (blue glow) an electron can undergo coherent spin-valley oscillation. Image credit: Mike Osadciw.

In recent years, many physicists and computer scientists have been working on the development of quantum computing technologies. These technologies are based on qubits, the basic units of quantum information. In contrast with classical bits, which have a value of 0 or 1, qubits can exist in superposition states, so they can have a value of 0 and 1 simultaneously. Qubits can be made of different physical systems, including electrons, nuclear spins (i.e., the spin state of a nucleus), photons, and superconducting circuits.

Electron s...

Read More