reinforcement fibres tagged posts

It’s a 3D Printer, but not as we know it

Schematic representation of printer and ultrasonic manipulation rig. (a) Switchable laser module is attached to the print head carriage, and traces out the shape of the printed part. The laser can be deliberately defocused to cure large regions slowly by increasing the height of the laser module. (b) Focused laser beam cures resin within the cavity of the ultrasonic manipulation device. P = PMMA, W = Water, PZT = lead zirconate titanate transducers, R = spot-a low Viscosity photocurable resin. Cross sections of the bundles of fibres lying within traps are shown, and are separated by half a wavelength.

Schematic representation of printer and ultrasonic manipulation rig. (a) Switchable laser module is attached to the print head carriage, and traces out the shape of the printed part. The laser can be deliberately defocused to cure large regions slowly by increasing the height of the laser module. (b) Focused laser beam cures resin within the cavity of the ultrasonic manipulation device. P = PMMA, W = Water, PZT = lead zirconate titanate transducers, R = spot-a low Viscosity photocurable resin. Cross sections of the bundles of fibres lying within traps are shown, and are separated by half a wavelength.

An engineering team has developed a new type of 3D printing that can print composite materials, which are used in many high performance products eg tennis rackets, golf clubs and airplane...

Read More