second quantum revolution. tagged posts

Forging a Quantum Leap in Quantum Communication

In quantum communication, the participating parties can detect eavesdropping by resorting to the fundamental principle of quantum mechanics -- a measurement affects the measured quantity. Thus, an eavesdropper can be detected by identifying traces his measurements of the communication channel leave behind. The major drawback of quantum communication is the slow speed of data transfer, limited by the speed at which the parties can perform quantum measurements. Researchers at Bar-Ilan University have devised a method that overcomes this, and enables an increase in the rate of data transfer by more than 5 orders of magnitude! This image illustrates their technique, in which they replaced electrical nonlinearity with a direct optical nonlinearity, transforming the quantum information into a classical optical signal. Credit: Bar-Ilan University

In quantum communication, the participating parties can detect eavesdropping by resorting to the fundamental principle of quantum mechanics — a measurement affects the measured quantity. Thus, an eavesdropper can be detected by identifying traces his measurements of the communication channel leave behind. The major drawback of quantum communication is the slow speed of data transfer, limited by the speed at which the parties can perform quantum measurements...

Read More