soft microrobots tagged posts

Shape-Shifting Molecular Robots respond to DNA Signals

Schematic diagram of the molecular robot. Molecular actuators work inside the robot, and the shape of the artificial cell membrane, which are bodies, are changed. When a DNA signal is input, the "molecular clutch," which transmits the force from the actuator, controls the shape-changing behavior. (B) Microscopy images of molecular robots. When the input DNA signal was "stop," the clutch was turned "OFF," and consequently, the shape-changing behavior was terminated (left side). The initiation of the shape-changing behavior when the DNA signal input was "start" was also confirmed (right side). Scale bar: 20 ?m. The white arrow indicates the molecular actuator part that transforms the membrane. Credit: Yusuke Sato

Schematic diagram of the molecular robot. Molecular actuators work inside the robot, and the shape of the artificial cell membrane, which are bodies, are changed. When a DNA signal is input, the “molecular clutch,” which transmits the force from the actuator, controls the shape-changing behavior. (B) Microscopy images of molecular robots. When the input DNA signal was “stop,” the clutch was turned “OFF,” and consequently, the shape-changing behavior was terminated (left side). The initiation of the shape-changing behavior when the DNA signal input was “start” was also confirmed (right side). Scale bar: 20 ?m. The white arrow indicates the molecular actuator part that transforms the membrane.
Credit: Yusuke Sato

Tohoku University and Japan Advanced Institute of Science and Technology researc...

Read More