spin-orbit coupling tagged posts

Atomic Clock mimics long-sought synthetic Magnetic State

JILA physicists used a strontium lattice atomic clock to simulate magnetic properties long sought in solid materials. The atoms are confined in an optical lattice, shown as an array of disk-shaped traps set at shallow depths. A laser (yellow wave) probes the atoms to couple the atoms' spins and motions. The two atomic spin states are illustrated in red and blue. Credit: Steven Burrows and Ye Group/JILA

JILA physicists used a strontium lattice atomic clock to simulate magnetic properties long sought in solid materials. The atoms are confined in an optical lattice, shown as an array of disk-shaped traps set at shallow depths. A laser (yellow wave) probes the atoms to couple the atoms’ spins and motions. The two atomic spin states are illustrated in red and blue. Credit: Steven Burrows and Ye Group/JILA

JILA physicists have caused atoms in a gas to behave as if they possess unusual magnetic properties long sought in harder-to-study solid materials. Representing a novel “off-label” use for atomic clocks, the research could lead to the creation of new materials for applications such as “spintronic” devices and quantum computers...

Read More

Magnetic Material could host wily Weyl fermions

An ORNL-led research team used neutrons (depicted as spheres) to determine the magnetic structure (seen as blue arrows) of an osmium-based material. X-rays (seen as purple waves) revealed the presence of a strong spin orbit effect (illustrated in red). Credit: ORNL/Jill Hemman

An ORNL-led research team used neutrons (depicted as spheres) to determine the magnetic structure (seen as blue arrows) of an osmium-based material. X-rays (seen as purple waves) revealed the presence of a strong spin orbit effect (illustrated in red). Credit: ORNL/Jill Hemman

An elusive massless particle could exist in a magnetic crystal structure, revealed by neutron and X-ray research. The team studied a material containing the dense element osmium and documented 2 conditions required for the presence of Weyl fermions -predicted in 1929 and observed experimentally in 2015. Researchers are looking for other materials that could host them to harness their unique properties in spintronics and advanced computing applications such as quantum computers.

“Once you have a material that hosts th...

Read More