standard model of cosmology tagged posts

Why the Vast Supergalactic Plane is Teeming with Only One Type of Galaxy

Mustia pisteitä ellipsin sisällä, keskiosassa punainen ellipsigalaksi, reunalla sininen kiekkogalaksi.
In the supergalactic plane, which lies on the equator of the picture, galaxies experience frequent interactions and mergers, leading to the formation of massive elliptical galaxies. By contrast, galaxies away from the plane evolve in relative isolation, allowing them to preserve their disk-like structure. (Image: Till Sawala)

Our own Milky Way galaxy is part of a much larger formation, the local Supercluster structure, which contains several massive galaxy clusters and thousands of individual galaxies. Due to its pancake-like shape, which measures almost a billion light years across, it is also referred to as the Supergalactic Plane.

Most galaxies in the universe fall into one of two categories: firstly, elliptical galaxies, made mostly of old stars and containing typically extremel...

Read More

James Webb Space Telescope Images Challenge Theories of how Universe Evolved

Six candidate galaxies
Images of six candidate massive galaxies, seen 500-800 million years after the Big Bang. Image credit: NASA/ESA/CSA/I. Labbe

Astronomers find that six of the earliest and most massive galaxy candidates observed by the James Webb Space Telescope so far appear to have converted nearly 100% of their available gas into stars, a finding at odds with the reigning model of cosmology.

The JWST appears to be finding multiple galaxies that grew too massive too soon after the Big Bang, if the standard model of cosmology is to be believed.

In a study published in Nature Astronomy, Mike Boylan-Kolchin, an associate professor of astronomy at The University of Texas at Austin, finds that six of the earliest and most massive galaxy candidates observed by JWST so far stand to contradict the preva...

Read More

Mapping Super Massive Black Holes in the Distant Universe

A slice through largest-ever three-dimensional map of the Universe. Earth is at the left, and distances to galaxies and quasars are labelled by the lookback time to the objects (lookback time means how long the light from an object has been travelling to reach us here on Earth). The locations of quasars (galaxies with supermassive black holes) are shown by the red dots, and nearer galaxies mapped by SDSS are also shown (yellow). The right hand edge of the map is the limit of the observable Universe, from which we see the Cosmic Microwave Background (CMB) – the light “left over” from the Big Bang. Fluctuations in the CMB as observed by the recent ESA Planck satellite mission are shown. The bulk of the empty space in between the quasars and the edge of the observable universe are from the “dark ages”, prior to the formation of most stars, galaxies, or quasars. Credit Anand Raichoor and the SDSS Collaboration.

A slice through largest-ever three-dimensional map of the Universe. Earth is at the left, and distances to galaxies and quasars are labelled by the lookback time to the objects (lookback time means how long the light from an object has been travelling to reach us here on Earth). The locations of quasars (galaxies with supermassive black holes) are shown by the red dots, and nearer galaxies mapped by SDSS are also shown (yellow). The right hand edge of the map is the limit of the observable Universe, from which we see the Cosmic Microwave Background (CMB) – the light “left over” from the Big Bang. Fluctuations in the CMB as observed by the recent ESA Planck satellite mission are shown...

Read More