STEM tagged posts

‘Nanodot’ control could fine-tune light for sharper displays, quantum computing

Illustration of light emission from a molybdenum diselenide nanodot embedded in tungsten diselenide.
On the left is an illustration of the experimental setup from this study. Molybdenum diselenide nanodots, represented by red triangles, are embedded in tungsten diselenide and encapsulated by hexagonal boron nitride (hBN) on top and bottom. A focused electron beam, shown in green, in a scanning transmission electron microscope (STEM) is aimed at the structure. The emitted light is collected to generate an intensity map. On the upper right is a dark-field STEM image of the molybdenum diselenide nanodot embedded inside tungsten diselenide. The contour of the nanodot is marked by dotted green lines. On the lower right is an artificially colored light emission intensity map of the same region, with the localized emission from the nanodot clearly visible. Credit: Provided by the researchers...
Read More

Quantum Dots can Spit out Clone-like Photons

Scanning Transmission Electron Microscope image (STEM) of single perovskite quantum dots. New study shows that single perovskite quantum dots could be a fundamental building block for quantum-photonic technologies for computing or communications.
Credit: Image courtesy of the authors

Researchers have produced coherent single photon emitters, a key component for future quantum computers and communications systems. The study, which involves using a family of materials known as perovskites to make light-emitting particles called quantum dots, appears today in the journal Science. The paper is by MIT graduate student in chemistry Hendrik Utzat, professor of chemistry Moungi Bawendi, and nine others at MIT and at ETH in Zurich, Switzerland.

The ability to produce individual photons with...

Read More