Do more with one link - claim and personalize your FREE link today! Effortlessly schedule, video meet, message chat, network, share materials, e-sign, etc – all in one spot. Collaborate, Nurture connections, Improve client services, Expedite deal closures, and more. 💼 Join FREE!!
A team of experimentalists at the U.S. Department of Energy’s Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.
A powerful new plated metal combination that superconducts at easily attained temperatures could pave the road for the next critical steps in the development of cutting-edge supercomputers. CIRES chemist and instrument designer Don David and colleagues Dave Pappas and Xian Wu just published the new recipe: an ultrathin layer of rhenium sandwiched between layers of gold, each measuring 1/1000th the diameter of a human hair that can superconduct at critical temperature over 6 Kelvin.
“The sheer magnitude of the critical temperature was unexpected,” said Don David, director of the CIRES Integrated Instrument Development Facility and coauthor on a paper published this week in Applied Physics Letters...
Rendering of the electronic device in which Majorana particles were observed. The device is made up of a superconductor (blue bar) and a magnetic topological insulator (gray strip). The Majorana particles result in transport channels (shown in red, pink, blue and yellow) in the electronic device. Credit: Courtesy UCLA
U.S. Army-funded researchers at ULCA have found a proverbial smoking gun signature of the long sought-after Majorana particle, and the find, they say, could block intruders on sensitive communication networks...
This illustration is based on a theoretical understanding of microscope-based measurements carried out by Cornell Univrsity. It shows a 2-dimensional iron-layer. The lattice seen here rougly measures 10/1.000.000 of 1 millimeter on each side. The red and darkblue clover-like structures represent two diffent iron electrons – each individually expressed (orbital state). In order to arrive at superconductivity the electrons must form groups of two (Cooper pairing) – symbolized by the light blue ‘eclipses’. They are superconductive – while the red do not form Cooper pairs because they predominantly contribute to the upholding of magnetism in the entire system. The scientific article from Niels Bohr Institute, Cornell University, University of St. Andrews et.al...
Recent Comments