Superconductor tagged posts

Physicists uncover new Competing state of matter in Superconducting material

Ames Laboratory researchers used laser pulses of less than a trillionth of a second in much the same way as flash photography, in order to take a series of snapshots. Called terahertz spectroscopy, this technique can be thought of as “laser strobe photography” where many quick images reveal the subtle movement of electron pairings inside the materials using long wavelength far-infrared light.
Credit: US Department of Energy, Ames Laboratory

A team of experimentalists at the U.S. Department of Energy’s Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

“Superconductivity is a str...

Read More

A Surprising New Superconductor

A PLATED QUBIT DEVICE. PHOTO: D. PAPAS/NIST

A PLATED QUBIT DEVICE. PHOTO: D. PAPAS/NIST

A powerful new plated metal combination that superconducts at easily attained temperatures could pave the road for the next critical steps in the development of cutting-edge supercomputers. CIRES chemist and instrument designer Don David and colleagues Dave Pappas and Xian Wu just published the new recipe: an ultrathin layer of rhenium sandwiched between layers of gold, each measuring 1/1000th the diameter of a human hair that can superconduct at critical temperature over 6 Kelvin.

“The sheer magnitude of the critical temperature was unexpected,” said Don David, director of the CIRES Integrated Instrument Development Facility and coauthor on a paper published this week in Applied Physics Letters...

Read More

Army Scientists Uncover how to Stop Cyber Intrusions

Rendering of the electronic device in which Majorana particles were observed. The device is made up of a superconductor (blue bar) and a magnetic topological insulator (gray strip). The Majorana particles result in transport channels (shown in red, pink, blue and yellow) in the electronic device. Credit: Courtesy UCLA

Rendering of the electronic device in which Majorana particles were observed. The device is made up of a superconductor (blue bar) and a magnetic topological insulator (gray strip). The Majorana particles result in transport channels (shown in red, pink, blue and yellow) in the electronic device. Credit: Courtesy UCLA

U.S. Army-funded researchers at ULCA have found a proverbial smoking gun signature of the long sought-after Majorana particle, and the find, they say, could block intruders on sensitive communication networks...

Read More

Iron Secrets behind Superconductors unlocked

This illustration is based on a theoretical understanding of microscope-based measurements carried out by Cornell Univrsity. It shows a 2-dimensional iron-layer. The lattice seen here rougly measures 10/1.000.000 of 1 millimeter on each side. The red and darkblue clover-like structures represent two diffent iron electrons - each individually expressed (orbital state). In order to arrive at superconductivity the electrons must form groups of two (Cooper pairing) - symbolized by the light blue 'eclipses'. They are superconductive - while the red do not form Cooper pairs because they predominantly contribute to the upholding of magnetism in the entire system. The scientific article from Niels Bohr Institute, Cornell University, University of St. Andrews et.al. demonstrates for the first time ever, that the five unbound iron electrons behave fundamentally different during the state of superconductivity. Illustration: Cornell University

This illustration is based on a theoretical understanding of microscope-based measurements carried out by Cornell Univrsity. It shows a 2-dimensional iron-layer. The lattice seen here rougly measures 10/1.000.000 of 1 millimeter on each side. The red and darkblue clover-like structures represent two diffent iron electrons – each individually expressed (orbital state). In order to arrive at superconductivity the electrons must form groups of two (Cooper pairing) – symbolized by the light blue ‘eclipses’. They are superconductive – while the red do not form Cooper pairs because they predominantly contribute to the upholding of magnetism in the entire system. The scientific article from Niels Bohr Institute, Cornell University, University of St. Andrews et.al...

Read More