THZ tagged posts

Harnessing Electromagnetic Waves and Quantum Materials to Improve Wireless Communication Technologies

A team of researchers from the University of Ottawa has developed innovative methods to enhance frequency conversion of terahertz (THz) waves in graphene-based structures, unlocking new potential for faster, more efficient technologies in wireless communication and signal processing.

THz waves, located in the far-infrared region of the electromagnetic spectrum, can be used to perform non-invasive imaging through opaque materials for security and quality control applications. Additionally, these waves hold great promise for wireless communication.

Advances in THz nonlinear optics, which can be used to change the frequency of electromagnetic waves, are essential for the development of high-speed wireless communication and signal processing systems for 6G technologies and beyond.

...Read More

Superlensing Without a Super Lens: Physicists Boost Microscopes beyond limits

Scientists used a new superlens technique to view an object just 0.15 millimetres wide using a virtual post-observation technique. The object ‘THZ’ (representing the ‘terahertz’ frequency of light used) is displayed with initial optical measurement (top right); after normal lensing (bottom left); and after superlensing (bottom right).

Ever since Antonie van Leeuwenhoek discovered the world of bacteria through a microscope in the late seventeenth century, humans have tried to look deeper into the world of the infinitesimally small.

There are, however, physical limits to how closely we can examine an object using traditional optical methods. This is known as the diffraction limit and is determined by the fact that light manifests as a wave...

Read More