TiO2 nanoparticles tagged posts

New Light Harvesting Potentials Uncovered

Graphical abstract: Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications

Quantum-confined bandgap narrowing mechanism through which the absorption of two UV absorbers, namely the graphene quantum dots (GQDs) and TiO2 nanoparticles, can be easily extended into the visible light range in a controllable manner. Such a mechanism may be of great importance for light harvesting, photocatalysis and optoelectronics.

For the 1st time resesarchers have found a quantum-confined bandgap narrowing mechanism where UV absorption of the graphene quantum dots and TiO2 nanoparticles can easily be extended into the visible light range. Such a mechanism may allow the design of a new class of composite materials for light harvesting and optoelectronics...

Read More

Leaf-Mimicking Device Harnesses Light to Purify Water

Bioinspired Bifunctional Membrane for Efficient Clean Water Generation: a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination.

Bioinspired Bifunctional Membrane for Efficient Clean Water Generation: a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination.

For years, scientists have been pursuin...

Read More