Triphala tagged posts

Secret to Longevity may Lie in the Microbiome and the Gut

Model of mechanisms of gut microbiota-host communication influencing aging factors. The gut microbiota communicates with the metabolic, inflammatory and oxidative stress pathways via direct and indirect mechanisms. As the physiological changes in all three of these axes are cross-regulatory, the simultaneous action implemented by the gut microbiota makes it a powerful influence in aging and age-related chronic disease development. Abbreviations: glucagon-like peptide (GLP)-1, insulin receptor (IR), insulin receptor substrate (IRS)-1, phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), target of rapamycin (TOR), Forkhead Box O protein (FOXO), sterol regulatory element binding protein (SREBP), acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), tight junction proteins (TJPs), lipopolysaccharide (LPS), toll-like receptor (TLR)4, nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), activator protein (AP)-1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, T helper (Th)17, AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α, sirtuin (SIRT), reactive oxygen species (ROS).

Model of mechanisms of gut microbiota-host communication influencing aging factors. The gut microbiota communicates with the metabolic, inflammatory and oxidative stress pathways via direct and indirect mechanisms. As the physiological changes in all three of these axes are cross-regulatory, the simultaneous action implemented by the gut microbiota makes it a powerful influence in aging and age-related chronic disease development...

Read More