TW Hydrae tagged posts

Astrophysics: A direct view of Star/Disk Interactions

Artist’s impression of the streams of hot gas that build up stars. Matter from the surrounding protoplanetary disk, the birthplace of planets, is channeled onto the stellar surface by magnetic fields shocking the surface at supersonic velocity (Copyright: Mark A. Garlick).

A team including researchers from the Institute for Astrophysics of the University of Cologne has for the first time directly observed the columns of matter that build up newborn stars. This was observed in the young star TW Hydrae system located approximately 163 light years from Earth. This result was obtained with the Very Large Telescope Interferometer (VLTI) and its GRAVITY instrument of the European Southern Observatory (ESO) in Chile...

Read More

ALMA pinpoints the Formation site of Planet around Nearest Young Star

ALMA image of the protoplanetary disk around the young star TW Hydrae. A small clump of dust was found in the southwestern (bottom right) part of the otherwise highly symmetric disk. Original size (344KB)

Researchers using ALMA (Atacama Large Millimeter/submillimeter Array) found a small dust concentration in the disk around TW Hydrae, the nearest young star. It is highly possible that a planet is growing or about to be formed in this concentration. This is the first time that the exact place where cold materials are forming the seed of a planet has been pinpointed in the disk around a young star.

The young star TW Hydrae, located194 light-years away in the constellation Hydra, is the closest star around which planets may be forming...

Read More

Hubble Captures ‘Shadow Play’ caused by possible Planet

These images, taken a year apart by NASA's Hubble Space Telescope, reveal a shadow moving counterclockwise around a gas-and-dust disk encircling the young star TW Hydrae. The two images at the top, taken by the Space Telescope Imaging Spectrograph, show an uneven brightness across the disk. Through enhanced image processing (images at bottom), the darkening becomes even more apparent. These enhanced images allowed astronomers to determine the reason for the changes in brightness. The dimmer areas of the disk, at top left, are caused by a shadow spreading across the outer disk. The dotted lines approximate the shadow's coverage. The long arrows show how far the shadow has moved in a year (from 2015-2016), which is roughly 20 degrees. Based on Hubble archival data, astronomers determined that the shadow completes a rotation around the central star every 16 years. They know the feature is a shadow because dust and gas in the disk do not orbit the star nearly that quickly. So, the feature must not be part of the physical disk. The shadow may be caused by the gravitational effect of an unseen planet orbiting close to the star. The planet pulls up material from the main disk, creating a warped inner disk. The twisted disk blocks light from the star and casts a shadow onto the disk's outer region. Credit: NASA, ESA, and J. Debes (STScI)

These images, taken a year apart by NASA’s Hubble Space Telescope, reveal a shadow moving counterclockwise around a gas-and-dust disk encircling the young star TW Hydrae. The two images at the top, taken by the Space Telescope Imaging Spectrograph, show an uneven brightness across the disk. Through enhanced image processing (images at bottom), the darkening becomes even more apparent. These enhanced images allowed astronomers to determine the reason for the changes in brightness. The dimmer areas of the disk, at top left, are caused by a shadow spreading across the outer disk. The dotted lines approximate the shadow’s coverage. The long arrows show how far the shadow has moved in a year (from 2015-2016), which is roughly 20 degrees...

Read More

Possible Formation Site of Icy Giant Planet Spotted

Artist's impression of the dust disk and a forming planet around TW Hydrae. Credit: NAOJ

Artist’s impression of the dust disk and a forming planet around TW Hydrae. Credit: NAOJ

A number of extrasolar planets have been found in the past two decades and now researchers agree that planets can have a wide variety of characteristics. However, it is still unclear how this diversity emerges. Especially, there is still debate about how the icy giant planets, such as Uranus and Neptune, form. To take a close look at the planet formation site, a research team led by Takashi Tsukagoshi at Ibaraki University, Japan, observed the young star TW Hydrae. This star, estimated to be 10 million years old, is one of the closest young stars to the Earth...

Read More