Unmanned Aerial Vehicles (UAVs) tagged posts

An Aerial Robot that can Independently Control its Own Position and Orientation

An aerial robot that can independently control its position and orientation
The aerial robot captured during exterior flight. Credit: Iriarte et al.

Unmanned aerial vehicles (UAVs), commonly known as drones, are now used to capture images and carry out a wide range of missions in outdoor environments. While there are now several UAV designs with different advantages and characteristics, most conventional aerial robots are underactuated, meaning that they have fewer independent actuators than their degrees of freedom (DoF).

Underactuated systems are often more cost-effective and can be controlled using simpler control strategies than overactuated systems (i.e., robots that have more independent actuators than their DoF). Nonetheless, they are often less reliable and not as capable of precisely controlling their position and orientation.

Researchers at Tec...

Read More

A Hybrid Unicycle that can move on the Ground and Fly

A hybrid unicycle that can move on the ground and fly

Unmanned aerial vehicles (UAVs), also known as drones, can help humans to tackle a variety of real-world problems; for instance, assisting them during military operations and search and rescue missions, delivering packages or exploring environments that are difficult to access. Conventional UAV designs, however, can have some shortcomings that limit their use in particular settings.

For instance, some UAVs might be unable to land on uneven terrains or pass through particularly narrow gaps, while others might consume too much power or only operate for short amounts of time. This makes them difficult to apply to more complex missions that require reliably moving in changing or unfavorable landscapes.

Researchers at Zhejiang University have recently developed a new unmanned, wheele...

Read More

Tech would use Drones and Insect Biobots to Map Disaster areas

Researchers at North Carolina State University have developed a combination of software and hardware that will allow them to use unmanned aerial vehicles (UAVs) and insect cyborgs, or biobots, to map large, unfamiliar areas -- such as collapsed buildings after a disaster. Credit: Edgar Lobaton

Researchers at North Carolina State University have developed a combination of software and hardware that will allow them to use unmanned aerial vehicles (UAVs) and insect cyborgs, or biobots, to map large, unfamiliar areas — such as collapsed buildings after a disaster. Credit: Edgar Lobaton

North Carolina State Uni researchers have developed a combination of software and hardware that will allow them to use unmanned aerial vehicles (UAVs) and insect cyborgs, or biobots, to map large, unfamiliar areas – such as collapsed buildings after a disaster...

Read More

Engineering students have successfully built Singapore’s first personal flying machine: “Snowstorm”

Snowstorm, the personal flying machine. (Photo: S Shiva)

Snowstorm, the personal flying machine. (Photo: S Shiva)

Comprising an intricate design of motors, propellers and inflated landing gear set within a hexagonal frame, Snowstorm is an electric-powered aircraft capable of vertical take-off and landing that can be controlled by a single person seated within it. The NUS team envisions this as a clean and simple way to realise our dreams of flying.

The personal flying machine was built over a one-year period, under the auspices of FrogWorks, a collaboration between NUS Faculty of Engineering’s Design-Centric Programme (DCP) and the University Scholars Programme (USP). FrogWorks engages students in the study, design and construction of clean leisure craft, a rapidly growing segment of green technology...

Read More