WIMPS tagged posts

‘Dark Stars’: Dark Matter may Form Exploding Stars, and Observing the Damage could help Reveal what it’s Made of

We wouldn’t be able to see them directly, but they could be out there. ESA/Webb, NASA & CSA, A. Martel

Dark matter is a ghostly substance that astronomers have failed to detect for decades, yet which we know has an enormous influence on normal matter in the universe, such as stars and galaxies. Through the massive gravitational pull it exerts on galaxies, it spins them up, gives them an extra push along their orbits, or even rips them apart.

Like a cosmic carnival mirror, it also bends the light from distant objects to create distorted or multiple images, a process which is called gravitational lensing.

And recent research suggests it may create even more drama than this, by producing stars that explode.

For all the havoc it plays with galaxies, not much is known about whet...

Read More

MACHOs are dead, WIMPs are a no-show – say hello to SIMPs

Conventional WIMP theories predict that dark matter particles rarely interact with one another, and only weakly with normal matter. Hitoshi Murayama of UC Berkeley and Yonit Hochberg of Hebrew University predict that dark matter SIMPs, comprised of a quark and an antiquark, would collide and interact strongly with one another, producing noticeable effects when the dark matter in galaxies collide. Credit: Kavli IPMU graphic

Conventional WIMP theories predict that dark matter particles rarely interact with one another, and only weakly with normal matter. Hitoshi Murayama of UC Berkeley and Yonit Hochberg of Hebrew University predict that dark matter SIMPs, comprised of a quark and an antiquark, would collide and interact strongly with one another, producing noticeable effects when the dark matter in galaxies collide. Credit: Kavli IPMU graphic

Colliding galaxies may be evidence in support of new candidate for universe’s elusive dark matter. The nature of dark matter remains elusive, with numerous experimental searches for WIMPs coming up empty-handed and MACHOs all but abandoned...

Read More

World’s Smallest Neutrino Detector observes elusive Interactions of particles

Researchers Bjorn Scholz (left) and Grayson Rich (right) with the world's smallest neutrino detector as it's being installed along 'neutrino alley' at the Spallation Neutron Source at Oak Ridge National Laboratory in Tennessee. Credit: Juan Collar/University of Chicago

Researchers Bjorn Scholz (left) and Grayson Rich (right) with the world’s smallest neutrino detector as it’s being installed along ‘neutrino alley’ at the Spallation Neutron Source at Oak Ridge National Laboratory in Tennessee. Credit: Juan Collar/University of Chicago

Physicists play leading role in confirming theory predicted 4 decades ago. In 1974, a Fermilab physicist predicted a new way for ghostly particles called neutrinos to interact with matter. More than four decades later, a UChicago-led team of physicists built the world’s smallest neutrino detector to observe the elusive interaction for the first time. Neutrinos are a challenge to study because their interactions with matter are so rare...

Read More

NASA’s Fermi mission expands its search for Dark Matter

Animation of gamma rays and Fermi

Top: Gamma rays (magenta lines) coming from a bright source like NGC 1275 in the Perseus galaxy cluster should form a particular type of spectrum (right). Bottom: Gamma rays convert into hypothetical axion-like particles (green dashes) and back again when they encounter magnetic fields (gray curves). The resulting gamma-ray spectrum ((lower curve at right) would show unusual steps and gaps not seen in Fermi data, which means a range of these particles cannot make up a portion of dark matter. Credits: SLAC National Accelerator Laboratory/Chris Smith

Dark matter, the mysterious substance that constitutes most of the material universe, remains as elusive as ever...

Read More