WS2 tagged posts

LEDs based on transition metal dichalcogenides displaying reduced efficiency losses
Oxygen-plasma intercalation. Credit: Nature Electronics (2024). DOI: 10.1038/s41928-024-01264-3

Light-emitting diodes (LEDs), semiconductor-based devices that emit light when an electric current flows through them, are key building blocks of numerous electronic devices. LEDs are used to light up smartphone, computer, and TV displays, as well as light sources for indoor and outdoor environments.

Past studies consistently observed a decline in the performance and efficiency of LED devices based on two-dimensional (2D) materials at high current densities. This loss of efficiency at high current densities has been linked to high levels of interaction between excitons, which cause a process known as exciton-exciton annihilation (EEA).

Essentially, the properties of some 2D materials...

Read More

Electronic Bridge allows Rapid Energy Sharing between Semiconductors

Artistic depiction of electron transfer driven by an ultrashort laser pulse, across an interface between two atomically-thin materials.
Artistic depiction of electron transfer driven by an ultrashort laser pulse, across an interface between two atomically-thin materials. This transfer is facilitated by an interlayer ‘bridge’ state that electrons are able to access due to lattice vibrations in both materials. (Credit: Gregory M. Stewart/SLAC)

As semiconductor devices become ever smaller, researchers are exploring two-dimensional (2D) materials for potential applications in transistors and optoelectronics. Controlling the flow of electricity and heat through these materials is key to their functionality, but first we need to understand the details of those behaviors at atomic scales.

Now, researchers have discovered that electrons play a surprising role in how energy is transferred between layers of 2D semiconductor m...

Read More