ΛCDM model tagged posts

Scientists detect Mysterious Suppression in Cosmic Structure Growth

Scientists detect mysterious suppression in cosmic structure growth
A section of the three-dimensional map constructed by BOSS. Image credit: Jeremy Tinker and the SDSS-III collaboration. Credit: Jeremy Tinker and the SDSS-III collaboration

A new study in published in Physical Review Letters analyzes the most complete set of galaxy clustering data to test the ΛCDM model, revealing discrepancies in the formation of cosmic structures in the universe, hinting at a new physics.

The ΛCDM model is the standard model of cosmology describing the universe’s evolution, expansion, and structure. It encompasses cold dark matter (CDM), normal matter and radiation, and the cosmological constant (Λ), which accounts for dark energy.

The model has been successful in explaining several cosmological observations, including the large-scale structure of the univer...

Read More

Dark Energy ‘Doesn’t Exist’ so Can’t be Pushing ‘Lumpy’ Universe Apart, Physicists Say

One of the biggest mysteries in science—dark energy—doesn’t actually exist, according to researchers looking to solve the riddle of how the universe is expanding.

Their analysis has been published in the journal Monthly Notices of the Royal Astronomical Society Letters.

For the past 100 years, physicists have generally assumed that the cosmos is growing equally in all directions. They employed the concept of dark energy as a placeholder to explain unknown physics they couldn’t understand, but the contentious theory has always had its problems.

Now a team of physicists and astronomers at the university of Canterbury in Christchurch, New Zealand are challenging the status quo, using improved analysis of supernovae light curves to show that the universe is expanding in a mor...

Read More

Researchers Study a Million Galaxies to find out how the Universe Began

fig2
Visualization of how the “different” primordial fluctuations of the universe lead to the different spatial distribution of dark matter. The central figure (common to both the upper and lower rows) shows the fluctuations in the reference Gaussian distribution. The color gradation (blue to yellow) corresponds to the value of the fluctuation at that location (low to high density regions). The left and right figures show fluctuations that deviate slightly from the Gaussian distribution, or are non-Gaussian. The sign in parentheses indicates the sign of the deviation from Gaussianity, corresponding to a negative (-) deviation on the left and a positive (+) deviation on the right. The top row is an example of isotropic non-Gaussianity...
Read More